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Self-similar bootstrap of divergent series
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A method is developed for calculating effective sums of divergent series. This approach is a variant of the
self-similar approximation theory. The interesting component here is using an algebraic transformation with a
power providing maximal stability of the self-similar renormalization procedure. The latter is to be repeated as
many times as necessary in order to convert into closed self-similar expressions all sums from the series
considered. This multiple and complete renormalization is called a self-similar bootstrap. The method is
illustrated by several examples from statistical physics.@S1063-651X~97!14805-X#

PACS number~s!: 64.60.Ak, 11.10.Gh, 64.10.1h, 02.30.Lt
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I. INTRODUCTION

The most powerful analytic tool for solving realistic, an
therefore difficult, problems in theoretical physics and a
plied mathematics is perturbation theory. However, pertur
tion series are notoriously badly behaved: in the majority
interesting cases they are divergent. A variety of mathem
cal techniques have been invented to assign a finite valu
the sum of a divergent series. Such techniques are gene
referred to as renormalization or summation methods. Th
methods are not only useful to theoretical and mathema
physicists, but are crucial because they provide a way
recover physical information from perturbative calculation
Probably the most common technique used to assign a m
ingful value to a divergent series is the Pade´ summation@1#.
Using the latter, one converts a formal power series t
continued fraction. Truncating this fraction at successive
ders, one obtains rational functions called Pade´ approxi-
mants. To reach a reasonable accuracy of such approxim
one usually needs to have tens of terms in a perturba
series.

Recently, a method was suggested@2–4# that permits us
to ascribe meaningful values to the limits of divergent
quences by exploiting just a few terms of perturbative ser
This approach, called the self-similar approximation the
@2–4#, is based on the following ideas.

First, one has to incorporate into the considered seque
additional functions whose role is to renormalize the
quence, making it convergent. These functions, becaus
their role, are called governing or control functions. The l
ter are to be defined from fixed-point conditions@2–4#. There
are several ways of introducing such control functions. O
natural way is to include them in the initial approximatio
@5,6#. Fixed-point equations may be written in the form
the minimal-difference condition@5–7#, or the minimal-
sensitivity condition@8–14#. A condition close to the latte
type has also been used in the potential envelope me
@15,16#. In two simple cases, of zero-dimensional and o
dimensional anharmonic oscillators, the control functio
were found analytically for an arbitrary perturbation ord
@17–20# by requiring the convergence of renormalized p
turbation theory. Another way of introducing control fun
tions is by using a scaled basis@21–24#, in which scaling
551063-651X/97/55~6!/6552~14!/$10.00
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parameters, playing the role of such functions, are given
analytical expressions with coefficients adjusted empirica
from the convergence of a numerical iterative procedu
One can also define scaling parameters without using t
analytical representation, directly from a numerical sea
providing, the convergence of an iterative method@25–29#.
In the present paper we suggest a way of introducing con
functions that, to our knowledge, different from all varian
mentioned.

Another step in the self-similar approximation theory is
construct an approximation cascade whose trajectory
bijective to the approximation sequence considered@30–32#.
In this paper we construct such a cascade not for the
quence itself but for its transform. Of course, the idea
considering a transformed series instead of an initial on
not new. This is, e.g., the basis of the known Borel summ
tion. Another example is the use of Chebyshev transfor
instead of straightforward power-series representation@33#.
What we believe is new in our approach is the use o
power-law algebraic transform with powers playing the ro
of control functions.

The constructed approximation cascade is embedded
an approximation flow. Integrating the evolution equation
the flow, we obtain a self-similar approximation@2–4,30–
32#.

In this paper we define control functions from the pri
ciple of maximal stability of the approximation cascade t
jectories. This is done by minimizing the absolute values
mapping multipliers, which is equivalent to a quasifixe
point condition@30–32#, since multipliers tend to zero whe
approaching a stable fixed point.

The plan of the paper is as follows. In Sec. II algebra
transforms are introduced, and the main steps of the s
similar approximation theory are sketched, not going in
mathematical details which can be found in Refs.@2–4,30–
32,34#. In Sec. III the procedure of the self-similar bootstr
is defined, consisting of multiple self-similar renormaliz
tions of all sums entering into a given series. In Sec. IV
particular case of the self-similar bootstrap is consider
leading to a nice representation in the form of multiple e
ponentials. The following sections illustrate the approach
various examples, emphasizing the generality of the met
that can be applied to problems of quite a different natur
6552 © 1997 The American Physical Society
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55 6553SELF-SIMILAR BOOTSTRAP OF DIVERGENT SERIES
II. ALGEBRAIC TRANSFORMS

Assume that we are interested in finding a functionf (x)
of a real variablexP(2`,1`). Without loss of generality,
the functionf (x) may be considered to be real, since the c
of a complex function can be always reduced to that of t
real functions. Let perturbation theory give for the functi
f (x) approximationspk(x), with k50,1,2,. . . . enumerating
the approximation number. The standard form ofpk(x) is a
series in powers, not necessarily integers, ofx. The series
can even include logarithms, since the latter can always
presented, using the replica trick, as an expression contai
a noninteger power.

The algebraic transform is defined as

Pk~x,s!5xspk~x!, ~1!

with s real positive. This transform changes the powers
the seriespk(x), thus changing the convergence properties
the latter. Effectively, the approximation order increas
from k to k1s as a result of Eq.~1!. The transform inverse
to Eq. ~1! is

pk~x!5x2sPk~x,s!. ~2!

To construct an approximation cascade, we proceed
follows. Define the expansion functionx5x( f ,s) by the
equation

P0~x,s!5 f , ~3!

whereP0 is the first available expression from Eq.~1!. Sub-
stituting x( f ,s) back into Eq.~1!, we obtain

yk~ f ,s![Pk„x~ f ,s!,s…. ~4!

The left-hand side of Eq.~4! represents a point of th
approximation-cascade trajectory corresponding to appr
mation ~1!. The transformation inverse to Eq.~4! reads

Pk~x,s!5yk„P0~x,s!,s…. ~5!

Function~4! realizes the endomorphism

yk~ f ,s!: R3R1→R.

Consider the family$yk : kPZ1% as a dynamical system i
discrete time. Since the trajectory of this dynamical syste
according to Eqs.~4! and ~5!, is bijective to the approxima
tion sequence$Pk%, this system was called@30–32# the ap-
proximation cascade. In order to simplify the considerati
let us pass from discrete time to continuous time. To t
end, embed the approximation cascade into an approx
tion flow,

$yk : kPZ1%,$y~ t, . . . !: tPR1%,

which means that the trajectory$y(t, f ,s)% of the flow has to
pass through all points$yk( f ,s)% of the cascade trajectory.

The evolution equation

]

]t
y~ t, f ,s!5v„y~ t, f ,s!,s… ~6!
e
o

e
ng

f
f
s

as

i-

,

,
s
a-

for the approximation flow, wherev( f ,s) is the velocity
field, can be integrated for an arbitrary time interval, sa
from t5k21 to t5k* , which gives

E
yk21

yk* d f

v~ f ,s!
5k*2k11; ~7!

here

yk5y~k, f ,s!, yk*5y~k* , f ,s!.

The upper limit in Eq.~7! corresponds, according to Eq.~5!,
to an approximation

Pk* ~x,s!5y„k* ,P0~x,s!,s…. ~8!

The momentt5k* is chosen so that to reach approximati
~8! by the minimal number of steps. That is, we require th
the right-hand side of Eq.~7! be minimal,

tk*[min~k*2k11!. ~9!

Under condition~9!, expression~8! is called the self-similar
approximation.

To find Eq.~8! explicitly, we need to concretize in Eq.~7!
the velocity fieldv( f ,s). This can be done by the Euler dis
cretization of Eq.~6!, yielding the finite difference

vk~ f ,s!5yk~ f ,s!2yk21~ f ,s!. ~10!

Thus, using Eq.~5!, the evolution integral~7! can be written
as

E
Pk21

Pk* d f

vk~ f ,s!
5tk* , ~11!

where

Pk5Pk~x,s!, Pk*5Pk* ~x,s!.

When no additional restrictions are imposed, the minim
number of steps for reaching a quasifixed point is, eviden

absmintk*51. ~12!

Additional restrictions can be of different types. For e
ample, if the value of the sought function at some pointx0 is
known, we may require that the found approximation wou
coincide at this point with the given exact value. Looking f
an approximation in the class of functions with a prescrib
symmetry is another way of imposing restrictions. In som
cases the asymptotic behavior of the sought function
x→0 andx→` may be available. Then, we require that t
correct asymptotic properties also play the roles of such
ditional constraints. In what follows, we shall concreti
these variants by illustrating them with explicit examples

In this way, the sole quantity that is not yet defined is t
parameters of transformation~1!. Recall that our aim is to
find an approximate fixed point of the cascade trajectory
quasifixed point, which, by construction, represents
sought function. Therefore, the powers of the transform in
Eq. ~1! is to be chosen so as to force the trajectory of
approximation dynamical system to approach an attrac
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fixed point. Recall thats here is nothing but a kind of contro
function, so that it is to be defined by a fixed-point conditio
As is discussed in Sec. I, there are several forms of equat
defining fixed points. Here we opt for a condition followin
from the analysis of fixed-point stability properties.

Considering the mapping given by the approximation c
cade, we may introduce the mapping multipliers

mk~ f ,s!5
]

] f
yk~ f ,s!. ~13!

This is related to the local Lyapunov exponentlk through
the formulalk5(1/k)lnumku. Consequently,mk;elkk. If at
increasing time, here atk→`, the trajectory approaches a
attracting fixed point, thenlk→l,0. This implies that the
multiplier mk→0, ask→`. Another quantity related to mul
tiplier ~13! is the predictability time@35#, which can be de-
fined astk'ulku21, or tk' zk/ lnumkuz. This is the character
istic time during which the motion along the casca
trajectory effectively approaches a fixed point. When the
ter is attractive—that is, when the limit of the loc
Lyapunov exponentlk , ask→`, tends to a negative valu
l,0—thenmk tends to zero, and at the same time, larg
absolute valuesulku lead to smaller characteristic timestk .

These properties show that, the closer we are to a fi
point, the smaller is the absolute value of the multiplier~13!.
Hence we may define the control functions as that providing
the minimum of the multiplier. Instead of the multiplier~13!,
as a function of the variablef , it may be more convenient to
pass to its image

mk~x,s!5mk„F0~x,s!,s…, ~14!

which is a function of the variablex. Then the control func-
tion s5sk(x) is defined by the equation

umk„x,sk~x!…u5minsumk~x,s!u. ~15!

Because the minimization of the multiplier makes the traj
tory more stable, we can call Eq.~15! the principle of maxi-
mal stability.And the so defined control functionsk(x) can
be termed thestabilizing control function, or, for brevity, the
stabilizer. Note, for comparison, that another definition
the fixed point would be to require velocity~10! to be zero,
which is exactly the minimal-difference condition@5,6#. Af-
ter the stabilizersk(x) is found from Eq.~15!, we substitute
it into Eq. ~8!, and, using the inverse transformation~2!, we
obtain theself-similar approximation

f k* ~x!5x2sk~x!Pk* „x,sk~x!… ~16!

for the sought function.
At the end of this section, let us note that the choice

control functions from fixed-point equations is rigorous
justified when the fixed point is stable, that is, ifumku,1.
When at some pointk the trajectory becomes unstable, w
have to stop the calculational procedure at the last st
point. Another possibility is to restructure the consider
perturbation series. For instance, the instability of the pro
dure often happens when we are trying to construct s
similar approximation for a divergent function. Assume th
we are dealing with such a functionf (x) which diverges as
.
ns

-

t-

r

d

-

f

le
d
-
f-
t

x→`. Then the self-similar renormalization procedure m
become unstable at largex. To avoid the instability, we can
either consider the functionf21(x), or can rewrite the series
in powers of 1/x, treating the latter as an expansion para
eter. Usually, after this reexpansion the stability is restor
In the following, we shall illustrate this possibility by a
example, and will suggest a simple trick, giving the answ
without the reexpansion, although being equivalent to
latter.

III. SELF-SIMILAR BOOTSTRAP

The procedure of calculating the self-similar approxim
tions ~16!, starting from a perturbative seriespk(x) is now
completely defined. The renormalized quantityf k* (x) must
be, by construction involving the stability properties, a mu
better approximation to the sought functionf (x) than the
initial perturbative seriespk(x). To improve the accuracy
we may repeat the self-similar renormalization, applying it
other series that are left in Eq.~16!.

For illustrating thismultiple self-similar renormalization,
consider explicitly a perturbative series

pk~x!5 (
n50

k

anx
n, a0Þ0, ~17!

containing integer powers ofx, although, as is mentione
above, the procedure works for arbitrary noninteger pow
Following Sec. II, we write the algebraic transform

Pk~x,s!5 (
n50

k

anx
n1s ~18!

of Eq. ~17!. As is seen, transform~18! corresponds to an
effectively higher perturbation order,k1s, as compared to
the initial series~17!, of orderk. Equation~3! for the expan-
sion functionx( f ,s) now reads

P0~x,s!5a0x
s5 f , ~19!

from where

x~ f ,s!5S f

a0
D 1/s. ~20!

The cascade-trajectory points in Eq.~4! become

yk~ f ,s!5 (
n50

k

anS f

a0
D n/s11

. ~21!

The velocity field~10! is written

vk~ f ,s!5akS f

a0
D 11k/s

. ~22!

Calculating the evolution integral~11!, with condition ~12!,
we obtain approximation~8! in the form

Pk* ~x,s!5Pk21~x,s!S 12
kak

sa0
11k/s Pk21

k/s ~x,s! D 2s/k

.

~23!
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The stabilizersk(x) is to be found from the minimization o
the multiplier

mk~x,s!5 (
n50

k
an
a0

S 11
n

sD xn ~24!

from Eq.~14!. Then we obtain the self-similar approximatio
~16!

f k* ~x!5pk21~x!S 12
kak

sa0
11k/s x

kpk21
k/s ~x! D 2s/k

, ~25!

wheres5sk(x).
In this way, the self-similar renormalization led us fro

the initial perturbative series~17! to the renormalized ap
proximation ~25!. The latter contains a perturbative seri
pk21(x) of lower order than the initialpk(x). This can be
written as the relation

f k* ~x!5Fk„x,pk21~x!… ~26!

showing that Eq.~25! depends onx andpk21(x). We may
repeat the procedure renormalizingpk21(x) and getting
f k21* (x). With such a double renormalization, we come fro
Eq. ~25! to

f k** ~x!5Fk„x, f k21* ~x!…5Fk~x,Fk21„x,pk22~x!…!.
~27!

Here the doubly renormalizedf k** (x) is expressed through
pk22(x). Repeating the self-similar renormalizationk times,
we obtain thek-fold self-similar approximation

f k*
. . . * ~x!5Fk„x,Fk21~x, . . . „F1~x,a0!… . . . !…, ~28!

where we took into account thatp0(x)5a0. It may happen
that Eq. ~28! contains other power series. Then we m
renormalize them as well. When all power series are ren
malized, so that none of them is left unrenormalized,
have

f k*
. . . * ~x!→ f̃ k~x!. ~29!

This complete procedure of the self-similar renormalizat
of all power series, resulting in an expressionf̃ k(x) contain-
ing none of them, will be called theself-similar bootstrap.

IV. MULTIPLE EXPONENTIALS

There are particular cases of the multiple self-simi
renormalization yielding a nice exponential representation
the resulting formulas. Here we consider one such a su
cient condition when all coefficients at perturbative pow
are positive,an.0. Then the minimum of the multiplier~24!
is realized ats→`. Taking this limit in Eq.~25! gives

f k* ~x!5pk21~x!expS aka0 xkD . ~30!

Repeating the renormalization in line with Eqs.~26! and
~27!, we obtain
r-
e

n

r
f
fi-
s

f k** ~x!5pk22~x!expS 1a0 ~ak21x
k211akx

k! D . ~31!

Continuing, we obtain thek-fold approximation~28! in the
form

f k*
. . . * ~x!5a0expS 1a0 ~a1x1a2x

21•••1akx
k! D .

~32!

As we see, thek-times repeated self-similar renormalizatio
does not deliver us from the power series. Really,
k-star approximation~32! is expressed through a part of th
initial perturbation series~17!, namely, through

pk~x!2a05 (
n51

k

anx
n.

With the notation

pk8~x![ (
n50

k

an8x
n, ~33!

in which an8[an11, n50,1;2, . . . ,k, we may rewrite Eq.
~32! as

f k*
. . . * ~x!5a0expS xa0 pk218 ~x! D . ~34!

The power seriespk218 (x) can be renormalized in our stan
dard way, giving the corresponding self-similar approxim
tion

f k218 ~x!5a08expS xa08 pk229 ~x! D , ~35!

in which

pk9~x![ (
n50

k

an9x
n, an9[an12 . ~36!

With this renormalization in mind, we transform Eq.~34!
into

f k*
. . . * ~x!5a0expS xa0 f k218 ~x! D . ~37!

Combining~35! and ~37!, we have

f k*
•••* ~x!5a0expF xa0a1expS xa1 pk229 ~x! D G . ~38!

Convertingk times all power series in the exponentials, wi
the use of the notation

b05a0 , bk5
ak
ak21

, k51,2, . . . , ~39!

we obtain thebootstrap self-similar approximation

f̃ k~x!5b0exp„b1x exp$b2xexp† . . .bk21xexp~bkx!‡% . . . ),
~40!
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as is discussed in Eq.~29!.
In the case of smallx→0, expression~40! yields

f̃ k~x!.c01c1x1c2x
21c3x

3, ~41!

with the coefficients

c05b0 , c15b0b1 , c25b0b1~b21
1
2b1!,

c35b0b1~b2b31
1
2b2

21b1b21
1
6b1

2!.

Substituting Eq.~39! here, we have

c05a0 , c15a1 , c25a21
a1
2

2a0
,

c35a31
a2
2

2a1
1
a1a2
a0

1
a1
3

6a0
2 .

This shows that the asymptotic behavior of Eqs.~41! and
~17!, as x→0, coincides up to the linear terms. For th
higher-order terms,anÞbn for n>2. Such a renormalization
of the higher-order expansion coefficients is typical of t
self-similar approximation theory@2–4#. This renormaliza-
tion allows us to extend the region of applicability of se
similar approximations, with respect to a variablex, as com-
pared to the initial perturbative series.

It is worth mentioning that the multiple, or continue
exponentials of type~40! have been studied in mathematic
literature for more than two centuries, since Euler; a num
of references can be found in Refs.@36,37#. We derived form
~40! following the multiple self-similar renormalization fo
the power series~17! with positive coefficients. Of course
for other sets of coefficients in Eq.~17! the final bootstrap
approximation will not necessarily take the form of a mu
tiple exponential, as in Eq.~40!, but will be a mixture of
exponentials and fractions, each expression being co
tioned by the principle of maximal stability~15!.

Another way of obtaining a multiple exponential could
as follows. Consider a sequence$wk(x)% of the terms

w1~x!5b0exp~b1x!,

w2~x!5b0exp†b1x exp~b2x!‡,

and so on, where the coefficientsbk are given by Eq.~39!. At
the k step of the sequence$wk(x)% we come to Eq.~40!.
However, this way is justified if the approximation casca
corresponding to the sequence$wk(x)% possesses a stab
trajectory leading to a quasifixed point representing Eq.~40!.
This approximation cascade can be constructed in the s
dard way @32,34#. From the equationw1(x)5 f we find
x5x( f ), which is

x~ f !5
a0
a1
lnS f

a0
D .

Then we define the approximation cascade as is describe
Sec. II. The corresponding trajectory$zk( f )%, consisting of
the terms

zk~ f ![wk„x~ f !…,
r

i-

e

n-

in

is bijective to the approximation sequence$wk(x)%.
The stability of the trajectory$zk( f )% is checked by cal-

culating the multipliers

Mk~x![S ]zk~ f !

] f D
f5w1~x!

, ~42!

and analyzing them with respect to the stability conditi
uMk(x)u,1.

At the end of this section let us remark that here we ha
used the word ‘‘bootstrap’’ in the generally accepted me
ing, as a kind of a completely self-consistent procedure p
mitting us to construct an explicit solution to a complicat
problem. This term in the close meaning was used, for
ample, in constructing a self-consistent distribution over p
ticle masses in high-energy physics@38#, and also in con-
structing theSmatrices for two-dimensional conformal fiel
theories@39#.

V. ZERO-DIMENSIONAL ANALOGS
OF FIELD THEORIES

A. Nondegenerate vacuum

Consider the partition function of a zero-dimensional a
harmonic model~see, e.g.,@32#! represented by the integra

J~g!5
1

Ap
E

2`

`

exp~2x22gx4!dx, ~43!

with the integrand possessing a single ‘‘vacuum’’ state,
cated at the pointx50. The expansion of this integral in
powers of the coupling parameterg, around the vacuum stat
leads to divergent series,

J~g!;a1bg1cg21dg31hg41•••, ~44!

a51, b52 3
4 , c5 105

32 , d52 3465
128 , h5 675 675

2048 .

Here we apply the self-similar bootstrap renormalizatio
guided by a desire to perform as many renormalization st
as possible. We write down the following set of approxim
tions to the quantityJ(g), analogous to the general form
~17!:

J0~g!5a,

J1~g!5a1bg,

J2~g!5a1bg1cg2, ~45!

J3~g!5a1bg1cg21dg3,

J4~g!5a1bg1cg21dg31hg4,

together with the following local multipliers, which can b
found from the general representation~24!:

m1~g,s!511
b

a

11s

s
g, ~46!
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m2~g,s!5m1~g,s!1
c

a

21s

s
g2,

m3~g,s!5m2~g,s!1
d

a

31s

s
g3,

m4~g,s!5m3~g,s!1
h

a

41s

s
g4.

Analysis of Eqs.~46! shows that, in the last three cases, t
most stable trajectories are realized ats→`, and that in the
first case,s→` also corresponds to a stable trajecto
Therefore the starting four steps of the self-similar bootst
renormalization can be safely performed in the exponen
form, leading to the intermediate renormalized quantity

J4**** ~g!5aexpS 1a ~bg1cg21dg31hg4! D . ~47!

We write down a set of approximations to the quant
J8(g)5bg1cg21dg31hg4, appearing in the exponentia
of this expression,

J18~g!5bg,

J28~g!5bg1cg2,

J38~g!5bg1cg21dg3,

J48~g!5bg1cg21dg31hg4,

with the following local multipliers:

m28~g,s!511
c

b

21s

11s
g,

m38~g,s!5m28~g,s!1
d

b

31s

11s
g2, ~48!

m48~g,s!5m38~g,s!1
h

b

41s

11s
g3.

Analysis of Eq.~48! leads us to the conclusion that the e
ponential renormalization is optimal at every step and, f
lowing the standard prescriptions of Sec. IV, we transfo
Eq. ~47! into

J4**** ~g!5aexpFba gexpS 1b ~cg1dg21hg3! D G . ~49!

Our routine procedure now requires us to renormalize
quantityJ9(g)5cg1dg21hg3, using the approximations

J19~g!5cg,

J29~g!5cg1dg2,

J39~g!5cg1dg21hg3,

and analyzing the following multipliers:
.
p
al

l-

e

m29~g,s!511
d

c

21s

11s
g,

m39~g,s!5m29~g,s!1
h

c

31s

11s
g2.

We conclude that the most stable trajectory corresponds
both cases, to the exponential summation, leading to the
termediate formula

J4**** ~g!5aexpH ba gexpF cb expS 1c ~dg1hg2! D G J .
~50!

The last step of the procedure, applied to the quan
J-(g)5dg1hg2, with the approximations set, is

J1-~g!5dg,

J2-~g!5dg1hg2,

and, with the multiplier

m2-~g,s!511
h

d

21s

11s
g,

should again be performed withs→`; the bootstrap pro-
gram is completed:

J̃4~g!5aexpFba gexpS cb expH dc gFexpS hd gD G J D G . ~51!

Similar expressions follow when fewer terms from the init
expansion are taken into account:

J̃3~g!5aexpH ba gexpF cb expS dc gD G J ,
J̃2~g!5aexpFba gexpS cb gD G ,

J̃1~g!5aexpS ba gD .
We already pointed out that the last expression co

sponds to a stable, but not to an optimal, i.e., the most sta
trajectory. Analyzingm1(g,s), we obtain the optimally
renormalized expression

J̃1o~g!5aS 12
b

as~g!
gD 2s~g!

, s~g!5
2bg

a1bg
. ~52!

At point g51, the following numbers are generated by t
sequenceJ̃i ,i52,3, . . . :

J̃1~1!50.472~ J̃1o50.512!, J̃2~1!50.991,

J̃3~1!50.473, J̃4~1!50.991.

We observe two subsequences, with odd and even num
with values practically unchanged within each subsequen
probably embracing the correct result from below and abo
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respectively. We can suspect that the corresponding
quenceJ̃i possesses the two competing unstable quasifi
points, i.e., behaves chaotically, and, in such a situation,
appropriate to use a self-similar approximation smoothed
the Cesaro averaging procedure@32#; i.e., in our case, simply
to take the average over the two neighboring members
each subsequence.

This conjecture is supported by an analysis of the co
sponding sequence of the multipliers for the sequenceJ̃i , as
discussed in Sec. IV. From the initial approximation

J̃1~g!5 f ,

one can find the expansion function

g5
a

b
lnS f

Apa
D ,

and, after the routine transformations, the following expr
sions for the multipliers~42! can be obtained:

M1~g![1,

M2~g!5F2~g!C2~g!,

M3~g!5F3~g!C3~g!,

M4~g!5F4~g!C4~g!,

where

F2~g!5
J̃2~g!

a
expS cb gD ,

F3~g!5
J̃3~g!

a
expF cb gexpS dc gD G ,

F4~g!5
J̃4~g!

a
expH cb gexpFdc gexpS hd gD G J

and

C2~g!5b1cg,

C3~g!5b1cgexpS dc gD1dg2expS dc gD ,
C4~g!5b1cgexpFdc gexpS hd gD G

1dg2expS hd gDexpFdc gexpS hd gD G
1hg3expS hd gDexpFdc gexpS hd gD G .

The following values are obtained atg51:

M151, M2520.089, M351.008, M4520.089,

supporting our initial guess that the approximation casc
behaves chaotically. After the Cesaro averaging, the so
e-
d
is
y

of

-

-

e
ht

value atg51 equals, say,@ J̃3(1)1 J̃4(1)#250.731, deviat-
ing from the exact value 0.772 with the percentage er
25.228%, an acceptable accuracy if we remember that
initial expansion~44! gives the percentage error;104%.
With the optimizedJ̃1o , we obtain an even better estima
0.752 for the sought value, with the percentage error equa
22.668%.

B. Double-degenerate vacuum

Consider the integral

I ~g!5E
2`

`

exp~x22gx4!dx, ~53!

representing zero-dimensional field theory, with the in
grand possessing the two maxima, located at the points

x̄56
1

A2g
,

whereg plays the role of coupling constant. We intend
estimate this integral in the region of intermediate couplin
g;1. It was pointed out in@40# that any conventional ex
pansion, in powers ofg or g21, is not sufficient, since it does
not take into account the existence of those degene
maxima, corresponding to the double-degenerate ‘‘vacuum

Within the framework ofD-dimensional field theories
the existence of a degenerate vacuum is taken into acco
e.g., by means of the zero-energy instanton–anti-instan
solutions, and all further corrections to observables co
from the excitations above the instanton–anti-instan
background, and from interaction of all those quasipartic
In our case we take into account the double-degene
vacuum by means of the shift

x5 x̄2X,

then expand the integral around the two saddle points
apply the self-similar renormalization to the resultin
asymptotic expansion in powers of a small parameterg1/2,
continuing it to the region ofg;1. Following these prescrip
tions, represent the integrand in the vicinity of one of t
saddle points in the form

exp~x22gx4!'expS 1

4gDexp~22X2!exp†A~g!X3
‡

'expS 1

4gDexp~22X2!†11A~g!X31•••‡,

and perform the integration, so that

I ~g!'2 expS 1

4gD ~a1bg1/21••• !,

a5Ap223/2, b5223/2. ~54!

Applying a self-similar renormalization, we readily obtain

I * ~g!52aexpS 1

4gDexpS bg
1/2

a D . ~55!
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Despite the absence of dynamics in the zero-dimensio
case,I * (g) consists of two factors of different nature: one
them is nonanalytic in the coupling constant, resembling
well-known ‘‘instanton’’ term within the framework of non
trivial D-dimensional field theories; the second is analytic
g1/2, and resembles a contribution from the excitations ab
the instanton–anti-instanton background.

The percentage error for the renormalizedI * (1), calcu-
lated with respect to the exactI (1)52.762, is 2.462%, and
considerable improvement is achieved compared to the
centage error of the perturbative expansion~54!, equal to
28.834%.

VI. STRONG-COUPLING REGIME

A. Zero-dimensional case

Let us apply to Eq.~43! the so-called ‘‘strong-coupling’’
expansion, in powers of 1/g, with a quartic term of the inte-
grand taken as a zero approximation, representing the
grand of Eq.~43! as follows:

exp~2x22gx4!'exp~2gx4!S 12x21
x4

2
1••• D .

After integration, we obtain the expansion in inverse pow
of the coupling constant

J~g!'ag21/41bg23/41cg25/41•••,

a5
1.813

Ap
, b5

20.612

Ap
, c5

0.227

Ap
. ~56!

We write the following consecutive approximations to t
quantityJ(z), wherez5g21/4:

J1~z!5az,

J2~z!5az1bz3,

J3~z!5az1bz31cz5;

and the multiplier m2(z,s)511(b/a)@(31s)/(11s)#z2

reaches its minimal zero value ats50.019, being much
smaller than the minimal value of the corresponding mu
plier m3(z,s)5m2(z,s)1(c/a)@(51s)/(11s)#z4. There-
fore, the renormalized quantityJ2* (z), will correspond to a
more stable trajectory thanJ3* (z). Following the standard
prescriptions of Sec. III, we obtain

J2* ~x!5axS 12
2b

a@11s~x!#
x2D 2[s~x!11]/2

,

s~x!52
a13bx2

a1bx2
.

The percentage error for the renormalized quantityJ2* (1),
calculated with respect to the exactJ(1)50.772, is
2.266%, and a considerable improvement is reached c
pared to the percentage error of the perturbative expan
~53! with only starting two terms taken into account, equal
212.208%.
al

e

e
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te-
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We represent Eq.~43! in a slightly different form,

J~g!5g21/4~a1bg21/21cg211••• ![g21/4@a1 J̄~g!#,
~57!

and write the following set of approximations toJ̄(g), using
the variabley5g21/2:

J̄1~y!5by,

J̄2~y!5by1cy2.

The multiplier m2(y,s)511(c/b)@(21s)/(11s)#y is
minimal ats50, andum2(y,0)u,1. The renormalized quan
tity J̄2* (y) can be readily written down,

J̄2*5
by

12
c

b
y

.

Now recalculatingJ* (g), we obtainJ* (1)50.771,with the
percentage error20.13%, much better than the percenta
error 4.386%,given by the initial expansion~57!. Even at
small g50.21, the percentage error given by the renorm
ized expression remains less than 1%; at the same time
percentage error given by the initial expression reac
43.538%.

B. One-dimensional case

Consider the dimensionless ground-state energye(g) of
the celebrated quantum one-dimensional quartic anharm
oscillator, closely connected to the so-calledw4 model in the
quantum field theory~see, e.g.,@3#!. Hereg stands for the
dimensionless coupling constant, expressed through the
rameters entering the Hamiltonian of the system by
known relation~see, e.g.,@3,41#!. The asymptotic expansion
for e(g) in the strong-coupling limit, corresponding t
g→`, is known~see, e.g.,@41#! in the following form:

e~g!>ag1/31bg21/31cg21,

a50.667 986, b50.143 67, c520.0088. ~58!

Let us, using the experience gained while considering
strong-coupling limit of the zero-dimensional field theor
renormalize the last two terms of the expansion~58!. Using
the notationy5g21/3, we write the following set of approxi-
mations for the quantityē5e2ag1/3:

ē1~y!5by,

ē2~y!5by1cy3,

with the multiplier m2(y,s)511(c/b)@(31s)/(11s)#y2,
possessing minimal value ats50, whengf0.1. The renor-
malized expression can be obtained following the stand
prescriptions of Sec. III. Returning to the initial variable, w
obtain

e* ~g!5ag1/31
b3/2

Abg2/322c
. ~59!
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An accuracy given bye* (g), can be elucidated by compar
son with the ‘‘exact’’ numerical results~see, e.g.,@41#!. At
g50.3, the percentage error, given by Eq.~59!, is equal to
20.099%, atg51 it is 20.022%, and atg5200 it is prac-
tically zero. To our knowledge, these results are better t
those obtained by other analytical methods. On the o
hand, at smallg50.001, an accuracy of formula~59! is by
far inferior, compared to many other analytical methods. T
reason can be understood if we notice th
e* (0)50.410 48, strongly deviating from the known valu
one-half, but being much better than the infinite value p
dicted by the initial expansion~58!. We conclude by remark
ing that using the effective timet* as an optimization pa
rameter, determined from the conditione* (0)5 1

2, one can
achieve better agreement of the renormalized formulas w
the exact results in the region of small coupling consta
For the goal being pursued in the present paper, it is eno
to limit the discussion to formulas~59!, designed for the
intermediate- and strong-coupling regimes.

VII. EQUATION OF STATE

A. System of hard spheres

We demonstrate below how the self-similar bootstrap
be applied in the theory of equations of state for simple
uids. Consider the celebrated model system of hard sph
with diameterd @42,43#, where the empirical equation o
state, connecting pressurep, temperatureT, number density
n, and reduced densityr5pnd2/6, is known:

p

nkT
5
11r1r22r3

~12r!3
. ~60!

The equation of state~60! agrees very well with the molecu
lar dynamics results@42#. On the other hand, the theoretic
virial formula according to Percus-Yevick@41,42#, is given
as follows:

p

nkT
5
11r1r223r3

~12r!3
. ~61!

These two expressions almost coincide at low densities,
at r50.1, the percentage error of Eq.~61!, as compared with
Eq. ~60!, equals20.18%, while for the intermediate an
high densities the agreement becomes very poor; e.g
r50.5, the percentage error is215.385% and atr50.8 it
equals253.112%.

Consider the regular part of Eq.~61!, defined asr ,

r511r1r223r3, ~62!

as an asymptotic, low-density expansion for the ‘‘true’’ reg
lar part r̃ (r), and try to continue expression~62! from the
region ofr!1, to the region ofr<1. It seems reasonable t
use only the last three terms from Eq.~62! for renormaliza-
tion, since the constant term describes the ideal gas beha
and we are interested in the region of high densities. Le
write the following consecutive approximations to the qua
tity r̄5r21:
n
er

e
t

-

th
s.
gh

n
-
res

.g

at

-

or,
s
-

r̄ 15r,

r̄ 25r1r2,

r̄ 35r1r223r3.

The multipliers are

m2~r,s!511r
21s

11s
,

m3~r,s!5m2~r,s!23r2
31s

11s
,

m18~r,s!5123r
31s

21s
.

It is admissible here to apply the self-similar bootstrap ren
malization in the form of the continued exponentials, since
every step of the procedure the exponential summation
performed along the stable trajectory. Following the stand
prescriptions of Sec. IV, we obtain

r̃ ~r!5r exp@r exp~23r!#. ~63!

The multiplierM (r), corresponding to Eq.~63!, is given by
the expression

M ~r!5exp@r exp~23r!#exp~24r!~123r!

and is very small atr. 1
3, e.g.,M (0.8)520.061, signaling

the robust stability of the sequence of the continued ex
nentials~63!. Recalculating

p̃

nkT
5
r̃ ~r!11

~12r!3
~64!

and comparing it to the empirical formula~60!, we obtain
that, at r50.1, the percentage error equals20.118%; at
r50.5, the percentage error is24.061%, and atr50.8 it
equals23.516%.

We see that the equation of state~64!, obtained from the
bootstrap self-similar renormalization, is much better, a
more uniformly agrees with the computer experiment, th
the initial virial expansion~61!, over the entire range of den
sities. The agreement drastically, by 17 times, improves
the region of high densities.

B. System of hard hexagons

The model of ‘‘hard hexagons’’ represents a simple tw
dimensional model of impenetrable molecules on the tri
gular lattice. The model allows an exact solution@44#, and
the phase transition from the liquid phase existing above
critical value of the so-called activityzc511.0917 . . . , to
the solid phase, existing belowzc , is well studied. The equa
tion of state, describing the dependence of the order par
eter R on the activity-related parameter, can be writt
down in quite a complicated and not very convenient fo
@44#. On the other hand, the critical value of the densityrc at
the point of the phase transition is known too, and equ
0.27639 . . . @44#. Independently, the high-density expa
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sions of the order parameter in powers of the inverse acti
z8[1/z, or in powers of the high-density variabl
r85123r, were obtained@45#. Their quality is considered
very high, since the critical parameters could be determi
from them with extremely high accuracy, using the Pa´
approximants in conjunction with some extrapolation me
ods@45#. Below, we present simple expressions for the eq
tion of state, obtained as a continuation of the high-den
expansions of the order parameter up to the point of ph
transition.

The expansion of the order parameter in powers ofr8 is
given as follows@45#:

R5123~r8!229~r8!3236~r8!42159~r8!5. ~65!

Let us apply to Eq.~65! the bootstrap self-similar renor
malization based on the exponential summation at ev
step, and leading to the equation of state for the system
hard hexagons in the form of the continued exponentials

R̃~r8!5expF2r8expS 3r8exp

3H 3r8expF4r8expS 5312r8D G J D G . ~66!

The function R̃(r8) approaches zero at rc8*
50.170 005(61), corresponding torc*50.276 665, and de
viating from the exact value by 0.1%. Thus the renormaliz
equation of state~66! agrees with the initial expansion in th
region of r8!1 by design, and predicts the point of th
phase transition with very high accuracy. On the other ha
the form of the continued exponential can be justifieda pos-
teriori, analyzing the multipliers~42!, where it can be
shown, after some lengthy, but routine calculations, t
M5(r8)→0, in the region ofr8'rc8* ; i.e. the stability con-
dition is satisfied along the trajectory, described by the
quence of approximations corresponding to Eq.~66!, in the
vicinity of the critical point. Similarly, using the known ex
pansion ofR up to the fifth-order terms inz8, a correspond-
ing equation of state can be obtained. In this case we fo
the critical zc8*.12.1803(61), deviating from the exac
value by 9.8%.

C. Polymer coil

The expansion factora of the polymer chain, within the
framework of a standard ‘‘beads-on-string’’ model, is conv
niently represented as a functiona25a2(z) of the parameter
z52(3/2p)3/2N1/2B/a3, whereN is the total number of
links in the chain,a stands for the typical distance betwe
the beads monomers, andB is the second virial coefficien
@46,47#. Below we consider only the case of a polymer co
corresponding toz.0. In the region ofz!1, the perturba-
tion theory in powers ofz can be developed, and for th
short-range potentials one can find@46,47# that

a25a2~z!511k1z1k2z
21•••,

k1'1.28, k25220.8. ~67!

One of the important problems in the physics of polym
coils, consists in the continuation of expansion~67! to the
ty

d
e
-
-
ty
se

ry
of

d

d,

t

-

d

-

,

r

region of z;1 @46,47#. On the other hand, in the limit o
z@1, a is related toz by a simple power law,

a;z2n21, ~68!

where the critical indexn> 1
2, can be calculated by differen

methods @46–48#. We propose below, using self-simila
renormalization, a simple way to continue Eq.~67! to the
region of arbitraryz, including both known limiting cases
and allowing us to estimaten from the stability condition.
The problem of this type was already mentioned above
Sec. II. From the viewpoint of the applicability of the stab
ity conditions, it is worthwhile to studya22(z)[a(z), reex-
panding it in powers ofz, so that

a~z!'11b1z1b2z
21•••, b1521.28, b2522.438.

~69!

The set of approximations toa(z), including the two
starting terms from Eq.~69!, can be written as

a051,

a1511b1z,

and the expression for the renormalized quantitya1* can be
readily obtained:

a1*5S s1
s12b1z

D s1⇒S s1
2b1

D s1z2s1 ~z→`!, ~70!

where the stabilizers1 should be positive, if we want to
reproduce, in the limit ofz→`, the correct power-law be
havior of a2(z). A different set of approximations, not in
cluding into the renormalization procedure the constant te
from Eq. ~69!, has the form

ā15b1z,

ā25b1z1b2z
2,

and applying the standard procedure, we obtain

a2*511b1zS 12
b2z

b1~11s2!
D 2~11s2!

⇒S 2b2
11s2

D 2~11s2!

b1
21s2z2s2 ~z→`!. ~71!

Demanding now that both Eqs.~70! and~71! have the same
power-law behavior atz→`, we find that

s25s152~2n21!.

Requiring now the fulfillment of the stability criteria for th
two approximations~70! and ~71! in the form of the
minimal-difference condition~see Sec. I!, we obtain the con-
dition on thepositivestabilizers1 , i.e., s1 should be deter-
mined from theminimumof expressionA:
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A5UF S 2b2
11s1

D 2~11s1!

b1
~21s1!

2S s1
2b1

D s1GU. ~72!

The minimum of Eq.~72! does exist, and is located at th
point s1'0.5, Correspondingly, the indexn is equal to
0.625, in reasonable agreement with all other theoretical
experimental estimates of this index@46–48#.

As it was pointed out in Sec. II, the results may also
obtained, if the self-similar renormalization is applied to t
initial expansion~67!, for the sought functiona2(z), al-
though it is formally divergent atz→`, and the stabilizer
should become negative to describe this divergence
rectly. By simple substitution of the coefficients, and chan
ing the criteria on minimum of Eq.~72! to themaximumof
the analogous expressionK,

K5UF S 2k2
11sD

2~11s!

k1
~21s!2S s

2k1
D sGU, ~73!

with respect to the nownegative stabilizers[2(122n).
One can see that the maximum is located at the p
s520.3719, leading to the very reasonable estimate for
critical indexn50.593. The final formulas have the follow
ing form:

a1
2~z!*5S s

s2k1z
D s, ~74!

a2
2~z!*511k1zS 12

k2z

k1~11s! D
2~11s!

. ~75!

Both formulas~74! and~75!, with s'20.3719, can be use
as an approximate ‘‘equation of state’’ for the polymer in t
whole range of the parameterz, satisfying, by design, both
known virial and scaling asymptotic expressions.

VIII. CRITICAL TEMPERATURE OF THE 2D
ISING MODEL FROM THE EXPANSION

AROUND THE DIMENSION ONE

In this section we calculate the critical temperatureTc of
the two-dimensional~2D! Ising model starting from the ap
proximate expression obtained within the framework of
so-called quasichemical approximation@42#. This approxi-
mation givesTc as a function of the coordination numb
z:

Tc~z!5
22

ln~122/z!
. ~76!

Expression~76! correctly describes the limit of the 1D Isin
model, with Tc50, and at the infinite dimensionality th
limit coincides with the well-known Bragg-Williams resu
Tc5z. The expansion around the latter limit has been wid
used, although its accuracy is not too good@49#. We adopt
the different approach, expanding Eq.~76!, in powers of the
parameterz22[D, around its correct,D51(z52), limit,
and use the self-similar renormalization to continue the
pansion valid atD!1to the region ofD52, corresponding
to the 2D Ising model with the quadratic lattice. The expa
sion of the inverse expression~76!, up to the quadratic term
in D, has the following form:
d

e

r-
-

nt
e

e

y

-

-

Tc
21~D!'

ln2

2 F11
1

ln2
lnS 1D D G1 1

4D2 1
16D2. ~77!

We renormalize separately the logarithmic contribution

L~D!5F11
1

ln2
lnS 1D D G , ~78!

and power-law contribution

P~D!5 1
4D2 1

16D2, ~79!

separating, in this way, the effects of long- and short-ran
contributions toTc .

The standard prescriptions of Sec. III are fully applicab
to expression~78! containing the logarithmic term. Two con
secutive approximations toL(D) are

L0~D!51,

L1~D!511
1

ln2
lnS 1D D ,

with the expansion functionf5Ds and the multiplier

m1~D,s!512
1

ln2S ln~D!1
1

sD ,
equal, atD52, to zero ass→`. The velocity function has
the form

v~s, f !52
f

ln2

lnf

s
.

Calculating the evolution integral and taking the limit
s→`, we obtain

L* ~D!5D21/ln2.

The expression forP* (D) can be readily written down in the
case of summation along the stable trajectory, correspon
to s→`,

P* ~D!5 1
4D exp~2 1

4D!.

RecalculatingTc* , we obtain Tc* (D52)52.321.The per-
centage error equals 2.292%, when compared to the e
Onsager resultTc52.269. It should be remembered that t
quasichemical approximation~76! works with the percentage
error of 27.149%, and that the initial expansion~77! deviates
from the exact result by 76.289%. Also, one of the b
known approximate theoretical schemes, known as the K
chi method@42#, gives a percentage error equal to 6.831%

IX. TEMPORAL ASYMPTOTES OF THE DIFFUSION
EQUATION WITH RANDOM STATIONARY NOISE

A. Poisson spectrum

Consider the diffusion of particles in a medium with ra
domly distributed traps, whose local densitya(r ) is de-
scribed by the non-negative Poisson random field@50–52#.
The local particle densityn(r ,t) in the presence of traps i
described by the equation

2
]

]t
n~r ,t !52¹2n~r ,t !1a~r !n~r ,t !, ~80!
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where we set the diffusion coefficient equal to 1.
This problem is formally equivalent to the Schro¨dinger

equation with imaginary time and potentiala(r ) @50–52#.
The eigenvalues of the Schro¨dinger operator correspondin
to Eq. ~80!, Ei , are non-negative. In addition, the density
statesp(E), near the finite fluctuational limit of the spec
trum, located atE50, and formed due to the rare fluctu
tions of the potential witha close to zero in large regions o
space, is known explicitly:

p~E!5 f ~E!exp~2E2D/2!, ~81!

whereD is the dimensionality of space@53,54#. Hereafter,
for the sake of simplicity, we omit the constant terms in t
exponential for the density of states. Also, forD51, the
pre-exponential factorf (E);E23/2, is known @53# and, be-
cause of this, below we consider only the one-dimensio
case. The general solution of Eq.~80! can be readily se
down @52# in terms of the eigenfunctions and eigenvalues
the corresponding quantum-mechanical problem:

n~r ,t !5(
i
cic i~r !exp~2Eit !, ~82!

and, considering only contributions from the rare fluctuatio
of the potential, the mean density^n& over the entire volume
for t→` can be represented in the form of the integral

^n~ t !&5n0E
0

`

p~E!exp~2Et!dE, ~83!

wheren0 describes the initial homogeneous particle distrib
tion. This integral can be evaluated by the method of stee
descent and the leading exponential term;exp(2t1/3) can be
set down@49–51#. Similar estimates were obtained for arb
trary D @50–52#.

Below we will obtain the higher-order contributions to th
asymptotic expansion of Eq.~83! near the saddle poin
Ē5(1/2t)2/3, and, using self-similar renormalization, obta
the leading corrections, ast→`, to the pre-exponential fac
tor f (Ē);t21.

Let us representE in the vicinity of Ē asE5Ē1e, and
expand the expression

F~ t,e![ ln@p~E!exp~2Et!#

in powers ofe up to the third-order terms, so that

F~ t,e!'2at1/32A~ t !e21B~ t !e3,

a533222/3, A~ t !533224/3t5/3, B~ t !553225/3t7/3,

and expand exp$B(t)e3% in powers ofe, so that

exp$F~ t,e!%'exp$2at1/3%exp$2A~ t !e2%

3@11B~ t !e31•••#.

Now ^n(t)& can be written down as follows:

^n~ t !&;t1/6exp$2at1/3%@11bt21/6#, b50.684, ~84!
al

f

s

-
st

i.e., the corrections to the pre-exponential factor are obtai
in the form of an expansion in inverse powers oft, valid as
t→`. Our aim is to continue this expression to the region
t;1.

Apply now the self-similar renormalization to the quanti
n̄(t)511bt21/6, with the two consecutive approximations

n̄051,

n̄1511bt21/6.

Following the standard prescriptions, the renormalized qu
tity n̄* (t) can be obtained:

n̄* ~ t !5S t1/61 b

6s~ t ! D
6s~ t !

, ~85!

where the stabilizer

s~ t !5
b

6t1/616b

is defined as the zero of the multiplier

m1~s,t !511
bt21/6~s2 1

6 !

s
.

For the intermediate region 1!t,`, the simple expression
can be written

n̄* ~ t !}tb/6t
1/6
,

which gives the correction to the pre-exponential factor
the form of continued noninteger powers. It is worth noti
that, already, the starting terms of the asymptotic expres
~85!, lead to the approximation-cascade trajectory with z
multiplier.

B. Gaussian spectrum

Consider an equation of the same type as Eq.~80!, with
the only difference being that the Poisson potentiala is re-
placed by the random potentialU(r ) with the properties of
the Gaussian ‘‘white noise,’’ i.e.,U(r )50, ^U(r )U(r 8)&
}d(r2r 8):

2
]

]t
n~r ,t !52¹2n~r ,t !1U~r !n~r ,t !. ~86!

An equation of this type, but with a noise dependent both
space and time, can be easily transformed to a nonlin
Burgers equation, Kardar-Parisi-Zhang~KPZ! equation, and
it also describes some other closely related physical pr
lems @55#. A stationary random potential is not meaningle
within the framework of, say, the KPZ equation, where o
can think about the stationary, random in space, pertu
tions of a growing interface. It is also considered in biolo
as a model for population dynamics in the presence o
random distribution of food@55#. An equation of type~86!
with a random potentialU(r ) can be also transformed to th
corresponding Schro¨dinger equation with imaginary time
Therefore, one can use the known properties of the spect
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of the corresponding quantum-mechanical problem to st
the t→` behavior of the diffusion equation with stationar
randomly distributed sources and sinks. The fluctuatio
limit of the spectrum is situated now atE→2`, with the
exponentially small density of states in its vicinity,

p~E!5 f ~E!exp~2uEu22D/2!, ~87!

which is formed due to the rare fluctuations of the poten
with large negative values, separated from each other by
tances much larger than their own sizes@53#. Such fluctua-
tions may be again considered separately. Eigenvalues
responding to the eigenfunctions localized at the
fluctuations are now negative, as distinguished from the c
considered above, and the mean density evolution ast→`
can be estimated from the following integral:

^n~ t !&5n0E
0

`

p~E!exp~ uEut !dE. ~88!

We again use the method of steepest descents, and fo
literally the same steps as in Sec. IX A. The saddle po
does exist for 1<D,4 ~except atD52 and 4, where the
situation becomes trivial! and is given by the expression

uĒu5S 2t

42D D 2/~22D !

.

The leading exponential term has the form

^n~ t !&;exp$a~D !t ~42D !/~22D !%,

a~D !5S 22D

42D D S 22
D

2 D 2/~D22!

,

with radically different behavior forD51 and 3:

^n~ t !&;exp$ua~1!ut3%, D51 ~89!

^n~ t !&;exp$2ua~3!ut21%, D53, ~90!

corresponding to an anomalously fast growth, compared
the simple exp(t), and anomalously slow decay, compared
exp(2t), respectively. We think that this difference takes
origin from the principally different properties of the corr
sponding Schro¨dinger operator, where it is known that,
D51, all states of the particle are localized, while,
D53, generally speaking, both localized and delocaliz
states are present@53#. These basic theorems, when appli
to the case of diffusion, explain why in one dimension, t
random distribution of sources and sinks causes an explo
instability of the density fluctuations, while in three dime
sion, the disorder can cause only longer decay times for
density fluctuations. Of course, the instability can be cu
by nonlinear interactions that should be now taken into
count.

At D51, where f (E);E @54#, applying the procedure
already discussed above, we obtain the expansion in the
cinity of the saddle point:

^n~ t !&}exp$ua~1!ut3%t5/2@11bt23/21•••#, b5
1

2Ap
,

y

al

l
is-

or-
e
se

ow
t

to

t
d

ve

e
d
-

vi-

and the renormalized expression can be readily written, us
the same definition forn̄(t) as above,

n̄* ~ t !5S t3/21 3b

2s~ t ! D
2s~ t !/3

;t3bt
23/2/2, s~ t !5

3b

2~b1t3/2!
.

~91!

At D53, a slightly different situation occurs, since

F~ t,e!'2ua~3!ut211A~ t !e22B~ t !e3,

A~ t !5t3, B~ t !52t5,

and, in order to guarantee the convergence of the integra
is reasonable to expand exp†F(t,e)‡ as follows:

exp$F~ t,e!%'exp$2ua~3!ut21%exp$2B~ t !e3%

3@11A~ t !e21•••#.

For the^n(t)& we obtain

^n~ t !&;exp$2ua~3!ut21%t25/3@11ct24/31•••#,

c'0.296.

The renormalized expression for the pre-exponential fac
has the form

n̄* ~ t !5S t4/31 4b

3s~ t ! D
4s~ t !/3

;t4ct
24/3/3, s~ t !5

4c

3~c1t4/3!
.

~92!

We have demonstrated, in this section, that self-sim
renormalization can be applied to dynamical problems
well, generating expressions for the pre-exponential fac
in the form of continued noninteger powers.

X. CONCLUSION

Here we suggested a variant of the self-similar appro
mation theory, permitting an easy and accurate summatio
divergent series. The method is based on a power-law a
braic transformation leading to an effective increase of
order of perturbative terms. The powers of this transform
tion play the role of control functions governing the conve
gence of renormalized series. These control functions
defined by the principle of maximal stability, i.e., from th
minimization of mapping multipliers. Such stabilizing con
trol functions may be called stabilizers.

Another important point of the method is the multip
self-similar renormalization converting all series into clos
self-similar expressions. This multiple and complete ren
malization is called the self-similar bootstrap. The resulti
effective sum of a divergent series can be presented thro
analytical expressions containing exponentials and fractio
rational or irrational. In particular cases, these can be o
exponentials or only fractions, depending on the behavio
control functions which dictate the resulting form. Becau
of the much larger variety of such resulting forms, t
method allows us to present the answers in relatively sim
analytical expressions which have, at the same time, qui
high accuracy. The use of several types of functions, suc
exponentials and various fractions, distinguishes this met
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from, e.g., the Pade´ approximants, which involve solely ra
tional functions.

In order to prove that the suggested method really gi
quite simple and accurate expressions for the effective s
of divergent series, we, first of all, considered several
models cartooning the generating functionals in field the
or partition functions in statistical physics. By these e
amples we illustrated that the method works well in differe
situations, for single- and double-well models, and for we
and strong coupling.

To stress the generality of the method, we applied it
A

ro

A

A

s
s
y
y
-
t
k

o

several problems of statistical physics of quite different n
tures: to constructing the equation of state, to calculating
critical temperature, and to finding the time asymptotics
stochastic dynamical processes. We hope that these va
and very different applications demonstrate well the valid
of the method.
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