PHYSICAL REVIEW E VOLUME 55, NUMBER 6 JUNE 1997

Self-similar bootstrap of divergent series
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A method is developed for calculating effective sums of divergent series. This approach is a variant of the
self-similar approximation theory. The interesting component here is using an algebraic transformation with a
power providing maximal stability of the self-similar renormalization procedure. The latter is to be repeated as
many times as necessary in order to convert into closed self-similar expressions all sums from the series
considered. This multiple and complete renormalization is called a self-similar bootstrap. The method is
illustrated by several examples from statistical phydi€4.063-651X97)14805-X|

PACS numbes): 64.60.Ak, 11.10.Gh, 64.1&h, 02.30.Lt

[. INTRODUCTION parameters, playing the role of such functions, are given by
analytical expressions with coefficients adjusted empirically

The most powerful analytic tool for solving realistic, and from the convergence of a numerical iterative procedure.
therefore difficult, problems in theoretical physics and ap-One can also define scaling parameters without using their
plied mathematics is perturbation theory. However, perturbaanalytical representation, directly from a numerical search
tion series are notoriously badly behaved: in the majority ofproviding, the convergence of an iterative metha8d—29.
interesting cases they are divergent. A variety of mathematiln the present paper we suggest a way of introducing control
cal techniques have been invented to assign a finite value foinctions that, to our knowledge, different from all variants
the sum of a divergent series. Such techniques are generaligentioned.
referred to as renormalization or summation methods. These Another step in the self-similar approximation theory is to
methods are not only useful to theoretical and mathematicalonstruct an approximation cascade whose trajectory is
physicists, but are crucial because they provide a way tbijective to the approximation sequence consid¢&d-32.
recover physical information from perturbative calculations.In this paper we construct such a cascade not for the se-
Probably the most common technique used to assign a meaquence itself but for its transform. Of course, the idea of
ingful value to a divergent series is the Padgnmation1]. considering a transformed series instead of an initial one is
Using the latter, one converts a formal power series to aot new. This is, e.g., the basis of the known Borel summa-
continued fraction. Truncating this fraction at successive ortion. Another example is the use of Chebyshev transforms
ders, one obtains rational functions called Paggroxi- instead of straightforward power-series representdtsi.
mants. To reach a reasonable accuracy of such approximant&/hat we believe is new in our approach is the use of a
one usually needs to have tens of terms in a perturbativpower-law algebraic transform with powers playing the role
series. of control functions.

Recently, a method was sugges{@d-4] that permits us The constructed approximation cascade is embedded into
to ascribe meaningful values to the limits of divergent se-an approximation flow. Integrating the evolution equation of
qguences by exploiting just a few terms of perturbative serieshe flow, we obtain a self-similar approximati¢g—4,30—
This approach, called the self-similar approximation theory32].

[2—4], is based on the following ideas. In this paper we define control functions from the prin-

First, one has to incorporate into the considered sequenagple of maximal stability of the approximation cascade tra-
additional functions whose role is to renormalize the sejectories. This is done by minimizing the absolute values of
guence, making it convergent. These functions, because ofapping multipliers, which is equivalent to a quasifixed-
their role, are called governing or control functions. The lat-point condition[30—32, since multipliers tend to zero when
ter are to be defined from fixed-point conditidi?s-4]. There  approaching a stable fixed point.
are several ways of introducing such control functions. One The plan of the paper is as follows. In Sec. Il algebraic
natural way is to include them in the initial approximation transforms are introduced, and the main steps of the self-
[5,6]. Fixed-point equations may be written in the form of similar approximation theory are sketched, not going into
the minimal-difference conditiof5-7], or the minimal- mathematical details which can be found in Ré¢8-4,30—
sensitivity condition[8—14]. A condition close to the latter 32,34). In Sec. Il the procedure of the self-similar bootstrap
type has also been used in the potential envelope methad defined, consisting of multiple self-similar renormaliza-
[15,16. In two simple cases, of zero-dimensional and onedions of all sums entering into a given series. In Sec. IV a
dimensional anharmonic oscillators, the control functionsparticular case of the self-similar bootstrap is considered,
were found analytically for an arbitrary perturbation orderleading to a nice representation in the form of multiple ex-
[17-2Q by requiring the convergence of renormalized per-ponentials. The following sections illustrate the approach by
turbation theory. Another way of introducing control func- various examples, emphasizing the generality of the method
tions is by using a scaled badi21-24, in which scaling that can be applied to problems of quite a different nature.
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ll. ALGEBRAIC TRANSFORMS for the approximation flow, where(f,s) is the velocity
field, can be integrated for an arbitrary time interval, say,

Assume that we are interested in finding a functf¢r) from t=k—1 tot=k*, which gives

of a real variablex e (— o, + ). Without loss of generality,
the functionf (x) may be considered to be real, since the case g df
of a complex function can be always reduced to that of two J K

real functions. Let perturbation theory give for the function
f(x) approximationg,(x), with k=0,1,2,. . . . enumerating
the approximation number. The standard formpefx) is a
series in powers, not necessarily integersxofThe series vi=y(k.f,9), yi=y(k* f,s).
can even include logarithms, since the latter can always be

presented, using the replica trick, as an expression containinghe upper limit in Eq(7) corresponds, according to E¢),

a noninteger power. to an approximation
The algebraic transform is defined as

=k*—k+1; 7
Yk—lv(f's) "

here

k (x,8)=y(K*,Py(x,$),9). (8)
Pk(X!S) :Xspk(x)! (1)

The moment=k* is chosen so that to reach approximation
with s real positive. This transform changes the powers of(8) by the minimal number of steps. That is, we require that
the seriep(x), thus changing the convergence properties ofthe right-hand side of Eq7) be minimal,
the latter. Effectively, the approximation order increases
from k to k+s as a result of Eq(1). The transform inverse ty =min(k* —k+1). 9
to Eq.(1) is Under condition(9), expression(8) is called the self-similar

Pr(X) =X Py(X,S). (2)  approximation.
To find Eq.(8) explicitly, we need to concretize in E(7)
To construct an approximation cascade, we proceed dbe velocity fieldv(f,s). This can be done by the Euler dis-
follows. Define the expansion function=x(f,s) by the cretization of Eq(6), yielding the finite difference

equation
vi(f,8)=yi(f,s) —yk-1(f,s). (10
Po(x,8) =T, 3 _ L )
o(%.5) @ Thus, using Eq(5), the evolution integral7) can be written
whereP, is the first available expression from Eq). Sub- @S
stituting x(f,s) back into Eq.(1), we obtain o df
f “ =ty (1)
yi(f,s)=P,(x(f,s),s). 4) P, Uk(f,S)
The left-hand side of Eq(4) represents a point of the where
approximation-cascade trajectory corresponding to approxi- . .
mation (1). The transformation inverse to E(f) reads Pr=Pi(Xx,;s), Py =Pi(x,s).
P(X,5)=Y(Po(X,S),S). (5) When no additional restrictions are imposed, the minimal

number of steps for reaching a quasifixed point is, evidently,
Function(4) realizes the endomorphism
abs minj = 1. (12
Vi(f,s): RXR;—R.
Additional restrictions can be of different types. For ex-
Consider the family{y,: ke Z,} as a dynamical system in ample, if the value of the sought function at some panis
discrete time. Since the trajectory of this dynamical systemknown, we may require that the found approximation would
according to Egs(4) and(5), is bijective to the approxima- coincide at this point with the given exact value. Looking for
tion sequencéP,}, this system was callefB0—37 the ap- an approximation in the class of functions with a prescribed
proximation cascade. In order to simplify the considerationsymmetry is another way of imposing restrictions. In some
let us pass from discrete time to continuous time. To thiscases the asymptotic behavior of the sought function at
end, embed the approximation cascade into an approxima— 0 andx—o may be available. Then, we require that the
tion flow, correct asymptotic properties also play the roles of such ad-
ditional constraints. In what follows, we shall concretize
{yk: keZ, }{y(t, ...): teR,}, these variants by illustrating them with explicit examples.
In this way, the sole quantity that is not yet defined is the
which means that the trajectofy(t,f,s)} of the flow has to  parametess of transformation(1). Recall that our aim is to
pass through all pointfy,(f,s)} of the cascade trajectory. find an approximate fixed point of the cascade trajectory, a

The evolution equation quasifixed point, which, by construction, represents the
sought function. Therefore, the powerof the transform in

J _ Eqg. (1) is to be chosen so as to force the trajectory of the

Ey(t,f,s)—v(y(t,f,s),s) © approximation dynamical system to approach an attracting
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fixed point. Recall thas here is nothing but a kind of control x—o0. Then the self-similar renormalization procedure may
function, so that it is to be defined by a fixed-point condition.become unstable at large To avoid the instability, we can
As is discussed in Sec. |, there are several forms of equationsther consider the functiofi 1(x), or can rewrite the series
defining fixed points. Here we opt for a condition following in powers of 1X, treating the latter as an expansion param-

from the analysis of fixed-point stability properties. eter. Usually, after this reexpansion the stability is restored.
Considering the mapping given by the approximation casin the following, we shall illustrate this possibility by an
cade, we may introduce the mapping multipliers example, and will suggest a simple trick, giving the answer
without the reexpansion, although being equivalent to the
J latter.
pF.8)= —ci(1.9). (13

o Ill. SELF-SIMILAR BOOTSTRAP
This is related to the local Lyapunov exponexy through

the formulax,=(1/k)In|w]. Consequentlyu,~e . If at The procedure of calculating the self-similar approxima-
increasing time, here &— o, the trajectory approaches an tions (16), starting from a perturbative serigg(x) is now
attracting fixed point, then,—\ <0. This implies that the completely defined. The renormalized quantify(x) must
multiplier u,— 0, ask—o. Another quantity related to mul- be, by construction involving the stability properties, a much
tiplier (13) is the predictability timg35], which can be de- better approximation to the sought functié(x) than the
fined asr~|\,| "%, or r¢=|k/In|w|. This is the character- initial perturbative seriepy(x). To improve the accuracy,
istic time during which the motion along the cascadewe may repeat the self-similar renormalization, applying it to
trajectory effectively approaches a fixed point. When the latother series that are left in E(L6).
ter is attractive—that is, when the limit of the local  For illustrating thismultiple self-similar renormalizatign
Lyapunov exponenk,, ask—x, tends to a negative value consider explicitly a perturbative series
A<0—then w, tends to zero, and at the same time, larger
absolute valuef\,| lead to smaller characteristic timeg.
These properties show that, the closer we are to a fixed
point, the smaller is the absolute value of the multip{iE3).
Hence we may define the control functismas that providing containing integer powers of, although, as is mentioned
the minimum of the multiplier. Instead of the multipli€x3), above, the procedure works for arbitrary noninteger powers.
as a function of the variablg it may be more convenient to Following Sec. Il, we write the algebraic transform
pass to its image

k
pk<x)=n20 ax",  ay#0, 17

K
m(X,8) = u(Fo(X,9),8), (14) Py(x,s)= nZO apx""® (18)

which is a function of the variable. Then the control func-

tion s=$,(x) is defined by the equation of Eq. (17). As is seen, transfornil8) corresponds to an

effectively higher perturbation ordek+s, as compared to
the initial serieq17), of orderk. Equation(3) for the expan-
sion functionx(f,s) now reads

Because the minimization of the multiplier makes the trajec-
tory more stable, we can call E(L5) the principle of maxi-
mal stability. And the so defined control functias(x) can
be termed thatabilizing control functionor, for brevity, the
stabilizer Note, for comparison, that another definition of f\ls
the fixed point would be to require velocitf0) to be zero, x(f,s)= (—) . (20)
which is exactly the minimal-difference conditi$,6]. Af- o

ter the stabilizes,(x) is found from Eq.(15), we substitute
it into Eq. (8), and, using the inverse transformati(®), we

|my(X,5(x))| = ming|m(x,s)]. (15

PO(X,S)ZaOXSZf, (19)

from where

The cascade-trajectory points in Eg) become

obtain the self-similar approximation k nis+1
f,s)= an| — 21
fie (X) =x"3IPE (x,5(x)) (16) Nl ngo "lao 2D
for the sought function. The velocity field(10) is written
At the end of this section, let us note that the choice of L k/s
control functions from fixed-point equations is rigorously vi(f.s)=a L 22)
justified when the fixed point is stable, that is,|jf,|<1. K Kl a,

When at some poink the trajectory becomes unstable, we

have to stop the calculational procedure at the last stablealculating the evolution integrall1), with condition(12),
point. Another possibility is to restructure the consideredwe obtain approximatior8) in the form

perturbation series. For instance, the instability of the proce- Ka ok
dure often happens when we are trying to construct self- * _ _ K Skis

similar approximation for a divergent function. Assume that Pic(x.s) Pk_l(x's)< ST ;;SPk_l(x,s)> '

we are dealing with such a functidi{x) which diverges as (23
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The stabilizers,(x) is to be found from the minimization of 1 ‘1 )
the multiplier ke (X)=Pr-2a(x)ex a—o(akflx +ax9)|. (31
k
a n - . ] N .
mxs)=S 214 Ny (24) Continuing, we obtain thé&-fold approximation(28) in the
=o a s form
f(rloer;] Eq.(14). Then we obtain the self-similar approximation fx "'*(X)=aoexr<ai(alx+azxz+ Ctaxky .
0

(32

k —slk
f¥(x)= pkl(x)( 1- S—ﬁkmx"p'ﬁ’_sl(x)) , (25 As we see, th&-times repeated self-similar renormalization

% does not deliver us from the power series. Really, the
k-star approximatiorf32) is expressed through a part of the

wheres=s,(x). initial perturbation serie§17), namely, through

In this way, the self-similar renormalization led us from
the initial perturbative serie€l7) to the renormalized ap- k
proximation (25). The latter contains a perturbative series Pr(X)—ag= 2 apXx".
px—1(x) of lower order than the initiap,(x). This can be n=1
written as the relation

f () =Fi(X, pr-1(x)) (26)

With the notation

k
PrO)= 2 ax", (33)
showing that Eq(25) depends orx and p,_1(x). We may “ =
repeat the procedure renormalizing_,(x) and getting . ) L o _
*_ (). With such a double renormalization, we come from'" which a,=a,;,, n=0,1;2... k, we may rewrite Eq.
Eq. (25 to (32 as
X
00 =Fx, F_ 1(0))=F (X, F—1(X, Pr—2(x))). o f* ---*(x)zaoexp(a—op;l(x) : (34)

Here the doubly renormalizeft* (x) is expressed through 1N€ power seriepi_1(x) can be renormalized in our stan-
P_»(x). Repeating the self-similar renormalizatikrimes, dard way, giving the corresponding self-similar approxima-
tion

we obtain thek-fold self-similar approximation

(0 =FX,Fxoa(X, ... (F1(X,80)) . . .)), (28) f&l(x)=a6exp{§p[<’2(x)), (35
0

where we took into account thag(x) =a,. It may happen

that Eq. (28) contains other power series. Then we may!n Which

renormalize them as well. When all power series are renor- k
malized, so that none of them is left unrenormalized, we pl(X)= 2, a'x", a'=an.,. (36)
have n=0
fx "‘*(x)ﬂ?k(x). (29 With this renormalization in mind, we transform E(B4)
into

This complete procedure of the self-similar renormalization X
of all power series, resulting in an expressigfix) contain- fr "'*(x):aoex;{—fﬁl(x)). (37)
ing none of them, will be called theelf-similar bootstrap. do

Combining(35) and (37), we have
IV. MULTIPLE EXPONENTIALS

X X
There are particular cases of the multiple self-similar fr 7 (X) =apexpg —aiexp —Pr_»(X)
Lais A - . : k 0 a. a, Nk-2
renormalization yielding a nice exponential representation of 0 1

the resulting formulas. Here we consider one such a suffi—C
cient condition when all coefficients at perturbative power
are positivea,>0. Then the minimum of the multiplig24)

. (38

onvertingk times all power series in the exponentials, with
Sthe use of the notation

is realized as—o0. Taking this limit in Eq.(25) gives ay
bozao, bk:_! k:1,2, ey (39)
a -1
¥ (X)=py- xexp{—x). 30 : - N
09 =Pie-2(x) 2N (30 we obtain thebootstrap self-similar approximation

Repeating the renormalization in line with Eq26) and ?k(x)=boexr(blx exp{boxexpl . . . by_xexp(bx)]} .. .),
(27), we obtain (40)
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as is discussed in E¢29). is bijective to the approximation sequenig(x)}.
In the case of smak— 0, expressio40) yields The stability of the trajectoryz(f)} is checked by cal-
- culating the multipliers
fr(X)=Co+ CyX+ CoX2+ Cax°, (41)
dzy(f)
with the coefficients Mk(X)E(T) : (42
f=pq(x)

Co=bg, ci=hgby, cr=bgb;(b,+3by),
and analyzing them with respect to the stability condition

Ca=bgb;(bobg+ 3b5+byib,+ §b)). IMi ()] <1.
At the end of this section let us remark that here we have
Substituting Eq(39) here, we have used the word “bootstrap” in the generally accepted mean-
5 ing, as a kind of a completely self-consistent procedure per-
a; mitting us to construct an explicit solution to a complicated
Co=2, C1=a;, Cx=a&+ 2a,’ problem. This term in the close meaning was used, for ex-
ample, in constructing a self-consistent distribution over par-
a% aja, ai ticle masses in high-energy physit38], and also in con-
Cz=azt Sa. + T + 62" structing theS matrices for two-dimensional conformal field
1 0 0 theories[39].
This shows that the asymptotic behavior of E¢&l) and
(17), as x—0, coincides up to the linear terms. For the V. ZERO-DIMENSIONAL ANALOGS
higher-order termsa,# b,, for n=2. Such a renormalization OF FIELD THEORIES

of the higher-order expansion coefficients is typical of the
self-similar approximation theorj{2—4]. This renormaliza-
tion allows us to extend the region of applicability of self-  Consider the partition function of a zero-dimensional an-
similar approximations, with respect to a variakleas com- harmonic mode(see, e.g.[32]) represented by the integral
pared to the initial perturbative series. 1

It is worth mentioning that the multiple, or continued, e U2 A
exponentials of typ€40) have been studied in mathematical Jg)= \/;fxexp( X“=gxdx, 43
literature for more than two centuries, since Euler; a number
of references can be found in Reff36,37. We derived form  with the integrand possessing a single “vacuum” state, lo-
(40) following the multiple self-similar renormalization for cated at the poink=0. The expansion of this integral in

the power serie¢17) with positive coefficients. Of course, powers of the coupling parametgraround the vacuum state
for other sets of coefficients in Eq17) the final bootstrap |eads to divergent series,

approximation will not necessarily take the form of a mul-
tiple exponential, as in Eq40), but will be a mixture of J(g)~a+bg+cg?+dgd+hgt+- -, (44)
exponentials and fractions, each expression being condi-
tioned by the principle of maximal stabilitl5).

Another way of obtaining a multiple exponential could be
as follows. Consider a sequenfe,(x)} of the terms

A. Nondegenerate vacuum

_ 105 3465 _ 675675
c=3%, d=—-T%, h=" 35%".

Il
=
o
Il
|
nlw

a

Here we apply the self-similar bootstrap renormalization,

@1(X)=boexp(byX), guided by a desire to perform as many renormalization steps
as possible. We write down the following set of approxima-
@,(X) =beexdb;x exp(b,x)], tions to the quantityJ(g), analogous to the general form

a7:

and so on, where the coefficieritsare given by Eq(39). At

the k step of the sequenclp(x)} we come to Eq(40). Jo(9) =4,

However, this way is justified if the approximation cascade

corresponding to the sequen¢e,(x)} possesses a stable Ji(g)=a+bg,

trajectory leading to a quasifixed point representing (&6).

This approximation cascade can be constructed in the stan- J,(g)=a+bg+cd?, (45)

dard way[32,34. From the equationp;(x)=f we find

x=x(f), which is Js(g)=a+bg+cg®+dg®,

a
x(f)=a—jln ) Ji(g)=a+bg+cg®+dg®+hg*

ngther with the following local multipliers, which can be

Then we define the approximation cascade as is describedi ;
PP ound from the general representati@):

Sec. Il. The corresponding trajectofy,(f)}, consisting of
the terms

—1+Ei (46)
2(F)= g(x()), my(g,8)=1+ 2 —5-9,
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B +c2+s ) ) _1+d2+s
my(g,s)=my(9g,s) 2 s 9 my(g,s) = ]
d3+s , ” o h3+s ,
Ms(9,8)=mx(9,8)+ = ——7~, m5(g,8)=mj3(g.8)+ < 79>
hd+s We conclude that the most stable trajectory corresponds, in
m,(g,s)=ms(g,s) + 3 Tg“. both cases, to the exponential summation, leading to the in-

termediate formula

Analysis of Eqs.(46) shows that, in the last three cases, the b c 1
most stable trajectories are realizedsat e, and that in the Jyr (g)=aexp[—gexp{5exp(—(dg+ hgz))“.
first case,s— also corresponds to a stable trajectory. a ¢ 50
Therefore the starting four steps of the self-similar bootstrap (50

renormalization can be safely performed in the exponentiaihe l|ast step of the procedure, applied to the quantity
form, leading to the intermediate renormalized quantity  j”(g)=dg+hg?, with the approximations set, is

1 14 —
Jyrx* (g)=aex%a(bg+cgz+dg3+hg4) . (47 Ji(g)=dg,
J3(9)=dg+hg?,
We write down a set of approximations to the quantity _ o
J'(g)=bg+cg?+dgi+hg?, appearing in the exponential and, with the multiplier
of this expression,

" 14 h2+s
Ji(g)=bg, M2 (9.9)=1+ 51359
J5(g)=bg+cg?, should again be performed with—o; the bootstrap pro-

gram is completed:

J3(g)=bg+cg’+dg’, - b c (d
J4(g)=aex agex Bex Eg
Ji(g)=bg+cg’+dg®+hg?,

oo} o

Similar expressions follow when fewer terms from the initial

with the following local multipliers: expansion are taken into account:

my(g s)=1+E—2+Sg ~ b c d
289 b1l+s” Js(g)=aex agex Eex Eg ,
, o, d3+s 2 . b c
m3(9,8)=ma(9,8)+ 7759 (48) Jo(g)=aexp —gexp g |
, , h4+s 3 _ b
my(9,8)=m3(9,8)+  7759™ Ji(g)=aexp ~g|.

Analysis of Eq.(48) leads us to the conclusion that the ex- We already pointed out that the last expression corre-
ponential renormalization is optimal at every step and, fol-sponds to a stable, but not to an optimal, i.e., the most stable,
lowing the standard prescriptions of Sec. IV, we transformtrajectory. Analyzingm;(g,s), we obtain the optimally
Eq. (47) into renormalized expression

1= ~a+bg’

b 1 1
i (9)=aex;{ggexp(5(cg+dgz+hgg)) - (49 Jio(9)=a

-s(g)
g) » s(9) (52)

as(g)

Our routine procedure now requires us to renormalize thet point g=1, the following numbers are generated by the
quantityJ”(g) =cg+dg®+ hg?, using the approximations sequencd; ,i=2,3,...:

Ji(g)=cg, J1(1)=0.4723,,=0.512, J,(1)=0.991,
J5(g)=cg+dg?, J5(1)=0.473, J4(1)=0.991.
Jg(g):cg+dgz+ hg®, We observe two subsequences, with odd and even numbers,

with values practically unchanged within each subsequence,
and analyzing the following multipliers: probably embracing the correct result from below and above,



6558 V. 1. YUKALOV AND S. GLUZMAN 55

respecti~vely. We can suspect that the corresponding se&alue atg=1 equals, say,J;(1)+J,(1)]2=0.731, deviat-
guencel; possesses the two competing unstable quasifixethg from the exact value 0.772 with the percentage error
points, i.e., behaves chaotically, and, in such a situation, it is-5.228%), an acceptable accuracy if we remember that the
appropriate to use a self-similar approximation smoothed bynitial expansion(44) gives the percentage error 10°%.

the Cesaro averaging proced{i82]; i.e., in our case, simply with the optimizedJ,,, we obtain an even better estimate
to take the average over the two ne|ghbor|ng members aof 752 for the sought value, with the percentage error equal to

each subsequence. —2.668%.
This conjecture is supported by an analysis of the corre-
sponding sequence of the multipliers for the sequehceas B. Double-degenerate vacuum
discussed in Sec. IV. From the initial approximation ) )
Consider the integral
‘]l(g) = f! .
. . . I(g)=| expx?—gx*dx, 53
one can find the expansion function @ fﬂc H 9x7) 3
a representing zero-dimensional field theory, with the inte-
9= 5 \/—a grand possessing the two maxima, located at the points
and, after the routine transformations, the following expres- =+ 1
sions for the multiplierg42) can be obtained: J2g'
Mi(g9)=1, whereg plays the role of coupling constant. We intend to
estimate this integral in the region of intermediate couplings
M2(9) =P,(9)W2(9), g~1. It was pointed out if40] that any conventional ex-
pansion, in powers af or g~ %, is not sufficient, since it does
M3(g)=P3(9)W5(9), not take into account the existence of those degenerate
_ maxima, corresponding to the double-degenerate “vacuum.”
Ma(9)=Pa(9)¥4(9), Within the framework ofD-dimensional field theories,
where the existence of a degenerate vacuum is taken into account,

e.g., by means of the zero-energy instanton—anti-instanton

solutions, and all further corrections to observables come
D,(g)= a ex;{BQ), from the excitations above the instanton—anti-instanton

background, and from interaction of all those quasiparticles.
In our case we take into account the double-degenerate
vacuum by means of the shift

x=x—X,
4(9) c d h , :
DuQ9)=—— Bgex —gex ag then expand the integral around the two saddle points and
¢ apply the self-similar renormalization to the resulting
and asymptotic expansion in powers of a small paramgftét,
continuing it to the region of ~ 1. Following these prescrip-
¥,(g)=b+cg, tions, represent the integrand in the vicinity of one of the
saddle points in the form
d
Vi(g)=b+c ex;{— +d 2ex;{— ) 1
+(9) 9=XR ¢ J c? exp(xz—gx“)mex;{ﬁ) exp(—2X2)exd A(g)X3]
_ L 1
W4(g)=b+cgexp -gexy 59 ~exp(@ exp— 2X2)[1+A(g)X3+ - -],
h d h . .
+dgzex;{ag>ex;{ggex;{ag” and perform the integration, so that
1
h d h ~ _ vz ...
+hgsexp(ag>ex%ggexp(ag”_ 1(9) 2exp(4g (a+bg¥?+ ),

The following values are obtained gt=1: a=\m2"% p=2" (54

M,=1, M,=-0.089, M;=1.008, M,=—0.089, Applying a self-similar renormalization, we readily obtain
. L . . 1 b 1/2
supporting our initial guess that the approximation cascade I*(g)=2an;{E ex;{ i _

behaves chaotically. After the Cesaro averaging, the sought (55




55 SELF-SIMILAR BOOTSTRAP OF DIVERGENT SERIES 6559
Despite the absence of dynamics in the zero-dimensional We represent Eq43) in a slightly different form,
case| *(g) consists of two factors of different nature: one of _
them is nonanalytic in the coupling constant, resembling the J(9)=g~ Y a+bg "*+cg '+ .- )=g " "a+J(9)],
well-known “instanton” term within the framework of non- (57
trivial D-dimensional field theories; the second is analytic in ) ) S = )
9“2 and resembles a contribution from the excitations abov&nd write the foII_ollelng set of approximations J¢g), using
the instanton—anti-instanton background. the variabley=g~ "=
The percentage error for the renormalizéd1), calcu- —
lated with respect to the exabtl)=2.762, is 2.462%, and Ja(y) =Dy,
considerable improvement is achieved compared to the per- — )
centage error of the perturbative expansi&d), equal to J2(y) =by+cy”.

—8.834%. The multiplier my(y,s)=1+(c/b)[(2+s)/(1+s)]y is
minimal ats=0, and|m,(y,0)|<1. The renormalized quan-

VI STRONG-COUPLING REGIME tity J,* (y) can be readily written down,

A. Zero-dimensional case

— b
Let us apply to Eq(43) the so-called “strong-coupling” Jy* = Y
expansion, in powers of @/ with a quartic term of the inte- 1— Ey
grand taken as a zero approximation, representing the inte- b

grand of Eq.(43) as follows: ) ) )
Now recalculatingl* (g), we obtainJ* (1)=0.771,with the

percentage error-0.13%, much better than the percentage
: error 4.386%,given by the initial expansidf7). Even at
small g=0.21, the percentage error given by the renormal-
After integration, we obtain the expansion in inverse powerdzed expression remains less than 1%; at the same time, the
of the coupling constant percentage error given by the initial expression reaches
43.538%.

4

X
expn(—xz—gx4)~exp1(—gx4)(1—x2+?+---

J(g)%agflﬂl_}_ bg*3/4+ C975/4+ cee

B. One-dimensional case
1.813 —0.612

a—\/;,b—\/;,

We write the following consecutive approximations to the
quantity J(z), wherez=g~ V4

c= £27 (56) Consider the dimensionless ground-state enexa) of
Jm the celebrated quantum one-dimensional quartic anharmonic
oscillator, closely connected to the so-callgimodel in the
guantum field theorysee, e.g.[3]). Hereg stands for the
dimensionless coupling constant, expressed through the pa-
rameters entering the Hamiltonian of the system by the
known relation(see, e.g.}3,41]). The asymptotic expansion

_ for e(g) in the strong-coupling limit, corresponding to
Jo(2)=az+b?’ g—, is known(see, e.g.[41]) in the following form;

Ji(z)=az,

Ji(z)=az+bZ+c2; e(g)=ag”*+bg Y3+ cg~?
and the multiplier my(z,s)=1+(b/a)[(3+s)/(1+5)]Z?
reaches its minimal zero value a&=0.019, being much
smaller than the minimal value of the corresp?nding multi-| ot us, using the experience gained while considering the
plier mg(z,8)=mx(z,s) +(c/a)[(5+s)/(1+8)]z". There-  syong-coupling limit of the zero-dimensional field theory,
fore, the renormalized quantity; (z), will correspond to &  renormalize the last two terms of the expansi68). Using
more stable trajectory thads(z). Following the standard the notationy=g~ 3, we write the following set of approxi-
prescriptions of Sec. Ill, we obtain mations for the quantitg=e—ag"3
L% e ei(y)=by,

a[l1+s(x)] '

a=0.667 986, b=0.14367, c=-0.0088. (58

J5(x)=ax| 1

&(y)=by+cy?,
a+3bx?
S)= T with the multiplier my(y,s)=1+ (c/b)[(3+s)/(1+5s)]y?,
a possessing minimal value at=0, wheng>0.1. The renor-

; malized expression can be obtained following the standard
The percentage error for the renormalized quaniy1), prescriptions of Sec. Ill. Returning to the initial variable, we

calculated with respect to the exad(1)=0.772, is obtain

2.266%, and a considerable improvement is reached com-

pared to the percentage error of the perturbative expansion 3
(53) with only starting two terms taken into account, equal to e* (g)=ag3+

—12.208%. Vbg?3-2¢”

(59
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An accuracy given bg* (g), can be elucidated by compari- Ti=p,

son with the “exact” numerical resultésee, e.g.[41]). At

g=0.3, the percentage error, given by E§9), is equal to T,=p+p2
—0.099%, atg=1 it is —0.022%, and ag= 200 it is prac-

tically zero. To our knowledge, these results are better than T3=p+p>—3p>.

those obtained by other analytical methods. On the other

hand, at smalg=0.001, an accuracy of formul&9) is by ~ The multipliers are
far inferior, compared to many other analytical methods. The
reason can be understood if we notice that
e*(0)=0.410 48, strongly deviating from the known value

one-half, but being much better than the infinite value pre-

2+s
My(p,S)=1+p7 =,

dicted by the initial expansio(68). We conclude by remark- ,3+s
ing that using the effective timg* as an optimization pa- ma(p,S) =My(p,S) = 3p" 1<,
rameter, determined from the conditie(0)=3, one can

achieve better agreement of the renormalized formulas with 3+s

the exact results in the region of small coupling constants. mi(PaS):1_3Pm-

For the goal being pursued in the present paper, it is enough
to limit the discussion to formulags9), designed for the |t is admissible here to apply the self-similar bootstrap renor-

intermediate- and strong-coupling regimes. malization in the form of the continued exponentials, since at
every step of the procedure the exponential summation is
VII. EQUATION OF STATE performgd along the stable trajectory. Following the standard

prescriptions of Sec. IV, we obtain

A. System of hard spheres _

We demonstrate below how the self-similar bootstrap can r(p)=p exlp exp(—3p)]. (63)
be applied in the theory of equations of state for simple lig-rne muttinlierm corresponding to E63). is aiven b
uids. Consider the celebrated model system of hard sphergs, exprezsion (P, P g d63).1s g y
with diameterd [42,43, where the empirical equation of
state, connecting pressupe temperaturél, number density M(p)=exfp exp(—3p)lexp—4p)(1—3p)

n, and reduced density=7nd?/6, is known:
s 3 and is very small ap>3, e.g.,M(0.8)=—0.061, signaling
P _I+ptpip (60)  the robust stability of the sequence of the continued expo-
nkT (1-p)° nentials(63). Recalculating

The equation of staté60) agrees very well with the molecu- L r(p)+]3: (64)

lar dynamics resultf42]. On the other hand, the theoretical nkT (1-p)

virial formula according to Percus-Yevidk1,47, is given o o )

as follows: and comparing it to the empirical formul®&0), we obtain

that, atp=0.1, the percentage error equald).118%; at
2 3 p=0.5, the percentage error i54.061%, and ap=0.8 it
P _ M (61)  equals—3.516%.
nkT (1-p)° We see that the equation of std6), obtained from the
bootstrap self-similar renormalization, is much better, and
These two expressions almost coincide at low densities, eJgore uniformly agrees with the computer experiment, than
atp=0.1, the percentage error of E§1), as compared with the initial virial expansior(61), over the entire range of den-
Eg. (60), equals—0.18%, while for the intermediate and sities. The agreement drastically, by 17 times, improves in
high densities the agreement becomes very poor; e.g. &#pe region of high densities.
p=0.5, the percentage error {s15.385% and ap=0.8 it
equals—53.112%. B. System of hard hexagons

Consider the regular part of E¢61), defined as, The model of “hard hexagons” represents a simple two-

dimensional model of impenetrable molecules on the trian-

r=1+p+p?=3p° (62 gular lattice. The model allows an exact soluti@ghf], and
the phase transition from the liquid phase existing above the
as an asymptotic, low-density expansion for the “true” regu-critical value of the so-called activitg,=11.097 ..., to

lar partT(p), and try to continue expressiqf2) from the the solid phase, existing belamy, is well studied. The equa-
region ofp<<1, to the region op<1. It seems reasonable to tion of state, describing the dependence of the order param-
use only the last three terms from H§2) for renormaliza- eter R on the activity-related parameter, can be written
tion, since the constant term describes the ideal gas behaviatpwn in quite a complicated and not very convenient form
and we are interested in the region of high densities. Let uf44]. On the other hand, the critical value of the dengifyat
write the following consecutive approximations to the quan-the point of the phase transition is known too, and equals
tity r=r—1: 0.2763® ... [44]. Independently, the high-density expan-
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sions of the order parameter in powers of the inverse activityegion of z~1 [46,47]. On the other hand, in the limit of
z’=1/z, or in powers of the high-density variable z>1, « is related toz by a simple power law,

p'=1-3p, were obtained45]. Their quality is considered S

very high, since the critical parameters could be determined @~z ' (68)
from them with extremely high accuracy, using the Pade

approximants in conjunction with some extrapolation meth-where the critical index=3, can be calculated by different
ods[45]. Below, we present simple expressions for the equamethods [46—48. We propose below, using self-similar
tion of state, obtained as a continuation of the high-densityenormalization, a simple way to continue H§Y) to the
expansions of the order parameter up to the point of phasé&gion of arbitraryz, including both known limiting cases

transition. and allowing us to estimate from the stability condition.
The expansion of the order parameter in powerp'ofs ~ The problem of this type was already mentioned above, in
given as followg45]: Sec. Il. From the viewpoint of the applicability of the stabil-

ity conditions, it is worthwhile to study~2(z)=a(z), reex-
R=1-3(p")*-9(p")%~36(p')*—~159p’)°. (65  panding it in powers of, so that

Let us apply to Eq(65) the bootstrap self-similar renor-
malization based on the exponential summation at every
step, and leading to the equation of state for the system of
hard hexagons in the form of the continued exponentials:

ﬁ(p’)zex;{ —p’exp( 3p'exp

(ool ]|

The function R(p’) approaches zero at p*
=0.170 005¢-1), corresponding tp} =0.276 665, and de-
viating from the exact value by 0.1%. Thus the renormalized

equation of stat€66) agrees with the initial expansion in the al =
region of p’<1 by design, and predicts the point of the

phase transition with very high accuracy. On the other hand,

the form of the continued exponential can be justifiegos-  where the stabilizess; should be positive, if we want to
teriori, analyzing the multipliers(42), where it can be reproduce, in the limit ok—«, the correct power-law be-
shown, after some lengthy, but routine calculations, thahavior of a?(z). A different set of approximations, not in-
Ms(p')—0, in the region ofp’ ~p.* ; i.e. the stability con- cluding into the renormalization procedure the constant term
dition is satisfied along the trajectory, described by the sefrom Eq.(69), has the form

guence of approximations corresponding to Ef), in the
vicinity of the critical point. Similarly, using the known ex-
pansion ofR up to the fifth-order terms ig’, a correspond-

ing equation of state can be obtained. In this case we found
the critical z.*=12.1803¢-1), deviating from the exact
value by 9.8%.

a(z)~1+byz+b,z?+--., b;=-1.28, b,=22.438.
(69

The set of approximations ta(z), including the two
starting terms from Eq(69), can be written as

a():l,

(66) al:l+ blZ,

and the expression for the renormalized quargifycan be
readily obtained:

SV (S 70
51—b.z :>—_b1 Z7 %1 (z—w), (70

a_l: blZ,

a,=b,z+b,7%

and applying the standard procedure, we obtain

C. Polymer coil

—(1+sy)
The expansion factos of the polymer chain, within the as=1+byz 1— L
framework of a standard “beads-on-string” model, is conve- by(1+s,)
niently represented as a functiaf= a?(z) of the parameter
z=2(3/2m)%¥NY?B/a%, whereN is the total number of —by |\ T,
links in the chaina stands for the typical distance between = 1+s, by 272 (z—). (71)

the beads monomers, amlis the second virial coefficient
[46,47). Below we consider only the case of a polymer coll
corresponding t@>0. In the region ofz<1, the perturba-

tion theory in powers oz can be developed, and for the
short-range potentials one can fiptb,47] that s,=5,=2(2v—1).

' Demanding now that both Eqé6/0) and(71) have the same
power-law behavior az— o0, we find that

2__ 2 — 2
a'=ai(g)=1tkiztkz"+ -, Requiring now the fulfillment of the stability criteria for the

N __ two approximations(70) and (71) in the form of the

k,~1.28, k,=-—20.8. 6 o - " -

! 2 Q minimal-difference conditiorfisee Sec.)| we obtain the con-
One of the important problems in the physics of polymerdition on thepositivestabilizers,, i.e., s; should be deter-

coils, consists in the continuation of expansi@Y) to the  mined from theminimumof expressiorA:
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—(1+s) s S1
A:‘ b(2+sl)_< 1 )

1 — bl
The minimum of Eq.(72) does exist, and is located at the We renormalize separately the logarithmic contribution
point s;~0.5, Correspondingly, the index is equal to 1 1
0.625, in reasonable agreement with all other theoretical and L(A)=|1+ ﬁ'n(g)}: (78)
experimental estimates of this indp&6—48.

As it was pointed out in Sec. Il, the results may also beand power-law contribution

obtained, if the self-similar renormalization is applied to the P(A)=1A—LA2 (79
initial expansion(67), for the sought functiona?(z), al- 4T eme

though it is formally divergent at—o, and the stabilizer ~separating, in this way, the effects of long- and short-range
should become negative to describe this divergence coikgntributions toT,.
rectly. By simple substitution of the coefficients, and chang-  The standard prescriptions of Sec. Ill are fully applicable
ing the criteria on minimum of Eq(72) to themaximumof  to expressiori78) containing the logarithmic term. Two con-
the analogous expressid¢h secutive approximations tio(A) are

1

A 1

s \® Lo(A)=1,

K= _) O( )

— kl

with respect to the nowegative stabilizers=2(1—2v).

One can see that the maximum is located at the poinfith the expansion functionf=AS and the multiplier
s=—0.3719, leading to the very reasonable estimate for the

critical index »=0.593. The final formulas have the follow-

_b2
1+s;

In2
(72) T HA)~— +iA—fA% (7D)

In2 "\ A

1 1
1+ —=In| -

_ —(1+s)

(2+s) _
1

1+s ' (73

1
Li(A)=1+ ﬁln

1 1
my(A,s)=1— in2 In(A)+ E)'

ing form:
s s . .
A(2)*=| ——|, (74)  equal, atA=2, to zero as—. The velocity function has
s—kyz the form
kpz | ~(2F9 ~f Inf
a3(2)* =1+k,z 1—m (79 U(S’f)__ﬁ?'

Both formulas(74) and (75), with s~ —0.3719, can be used Calculating the evolution integral and taking the limit of
as an approximate “equation of state” for the polymer in theS— %+ We obtain
whole range of the parameter satisfying, by design, both L*(A)=A"1"2,

known virial and scaling asymptotic expressions. ) i i )
The expression foP* (A) can be readily written down in the

case of summation along the stable trajectory, corresponding

VIII. CRITICAL TEMPERATURE OF THE 2D
to s— o,

ISING MODEL FROM THE EXPANSION . . .
AROUND THE DIMENSION ONE P*(A)=zAexp(—3z4).

In this section we calculate the critical temperatligeof ~ RecalculatingT? , we obtain T; (A=2)=2.321.The per-
the two-dimensiona{2D) Ising model starting from the ap- centage error equals 2.292%, when compared to the exact
proximate expression obtained within the framework of theOnsager resulf ;=2.269. It should be remembered that the
so-called quasichemical approximatipf2]. This approxi- quasichemical approximatidi@6) works with the percentage
mation givesT,. as a function of the coordination number error of 27.149%, and that the initial expansi@) deviates

z from the exact result by 76.289%. Also, one of the best
_ -2 known approximate theoretical schemes, known as the Kiku-
T(2)= In(1—2/z)" (76) chi method[42], gives a percentage error equal to 6.831%.

Expression76) correctly describes the limit of the 1D Ising IX. TEMPORAL ASYMPTOTES OF THE DIFFUSION
model, with T.=0, and at the infinite dimensionality the EQUATION WITH RANDOM STATIONARY NOISE
limit coincides with the well-known Bragg-Williams result
T.=z. The expansion around the latter limit has been widely
used, although its accuracy is not too gdd@]. We adopt Consider the diffusion of particles in a medium with ran-
the different approach, expanding Ed@6), in powers of the domly distributed traps, whose local densi@(r) is de-
parameterz—2=A, around its correctD=1(z=2), limit,  scribed by the non-negative Poisson random fiéd—52.
and use the self-similar renormalization to continue the exThe local particle density(r,t) in the presence of traps is
pansion valid afA<1to the region ofA=2, corresponding described by the equation

to the 2D Ising model with the quadratic lattice. The expan-
sion of the inverse expressidni6), up to the quadratic term
in A, has the following form:

A. Poisson spectrum

—%n(r,t)=—Vzn(r,t)+a(r)n(r,t), (80)
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where we set the diffusion coefficient equal to 1. i.e., the corrections to the pre-exponential factor are obtained

This problem is formally equivalent to the ScHinger in the form of an expansion in inverse powerstpf/alid as
equation with imaginary time and potentialr) [50-52.  t—o. Our aim is to continue this expression to the region of
The eigenvalues of the Schiioger operator corresponding t~1.
to Eqg.(80), E;, are non-negative. In addition, the density of  Apply now the self-similar renormalization to the quantity
statesp(E), near the finite fluctuational limit of the spec- n(t)=1+bt Y with the two consecutive approximations
trum, located aE=0, and formed due to the rare fluctua- _
tions of the potential withw close to zero in large regions of no=1,
space, is known explicitly: _

n,=1+bt 16,
E)="f(E)exp —E P, 81 . - ,
PIE)=T(E)ext ) ®1) Following the standard prescriptions, the renormalized quan-

whereD is the dimensionality of spadé&3,54. Hereafter, ity N*(t) can be obtained:
for the sake of simplicity, we omit the constant terms in the

6s(t

exponential for the density of states. Also, for=1, the ()= tYo+ _) (), (85)
pre-exponential factof(E)~E %2 is known[53] and, be- 6s(t)
cause of this, below we consider only the one-dimensional .
case. The general solution of E0) can be readily set Where the stabilizer
down[52] in terms of the eigenfunctions and eigenvalues of b
the corresponding quantum-mechanical problem: s(t)= 51751 6b

n(r,t)=2 cihi(r)exp(—Eit), (82 is defined as the zero of the multiplier

|

o - . bt™¥%(s— %)
and, considering only contributions from the rare fluctuations my(st)=1+ ———.
of the potential, the mean density) over the entire volume S

for t—co can be represented in the form of the integral For the intermediate regiondt<co, the simple expression

can be written

(n(v)=n [ pErex-EVGE, @9 e

whereng describes the initial homogeneous particle distribu-which gives the correction to the pre-exponential factor in
tion. This integral can be evaluated by the method of steepestie form of continued noninteger powers. It is worth noting
descent and the leading exponential teraxp(—t'3) can be  that, already, the starting terms of the asymptotic expression
set down[49-51]. Similar estimates were obtained for arbi- (85), lead to the approximation-cascade trajectory with zero
trary D [50-52. multiplier.

Below we will obtain the higher-order contributions to the
asymptotic expansion of Eq@83) near the saddle point B. Gaussian spectrum
E=(1/2)?®, and, using self-similar renormalization, obtain

the Ieﬂjing_clzorrections, ds-, to the pre-exponential fac- o oniy difference being that the Poisson potentids re-
tor f(E)~t™". placed by the random potentibl(r) with the properties of

Let us represen in the vicinity of E asE=E+e€, and o Gaussian “white noise,” i.e.0(r)=0, (U(r)U(r')}
expand the expression

Consider an equation of the same type as ([B(), with

cd(r=r'):
d(t,e)=In[p(E)exp—Et)] P
——n(r,t)==V2n(r,t) +U(r)n(r,t). (86)
in powers ofe up to the third-order terms, so that at
D(t,e)~—atBP—A(t) e+ B(t) €3 An equation of this type, but with a noise dependent both on

space and time, can be easily transformed to a nonlinear
a=3x2"28 A(t)=3><2‘4’3t5’3, B(t):5X2_5/3t7/3, _Burgers equz_mon, Kardar-Parisi-ZhatigPZ2) equat|on, and

it also describes some other closely related physical prob-
lems[55]. A stationary random potential is not meaningless

and expand ex(t)e’} in powers ofe, so that within the framework of, say, the KPZ equation, where one

~ Al _ 2 can think about the stationary, random in space, perturba-
exp(P(t, )} ~exp —atTexp ~A() ¢’} tions of a growing interface. It is also considered in biology
X[1+B(t)e3+---]. as a model for population dynamics in the presence of a
random distribution of food55]. An equation of typeg86)
Now (n(t)) can be written down as follows: with a random potentidl (r) can be also transformed to the

corresponding Schdinger equation with imaginary time.
(n(t))~tY%exp{—at¥3[1+bt 6], b=0.684, (84  Therefore, one can use the known properties of the spectrum
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of the corresponding quantum-mechanical problem to studgnd the renormalized expression can be readily written, using
thet—o behavior of the diffusion equation with stationary, the same definition fon(t) as above,

randomly distributed sources and sinks. The fluctuational

limit of the spectrum is situated now &— —«, with the

~t3bt‘3/2/2
exponentially small density of states in its vicinity,

L b \2s(b53
n*(t)=(t3’2+ —)

25(0) - SO= 35

p(E)=f(E)exp(—|E[2~°7), (87 (0
At D=3, a slightly different situation occurs, since
which is formed due to the rare fluctuations of the potential
with large negative values, separated from each other by dis- D(t,e)~—a(3)[t T +A(t) e~ B(t) €,
tances much larger than their own siZ&§]. Such fluctua-
tions may be again considered separately. Eigenvalues cor- At)=t3,  B(t)=2t>,

responding to the eigenfunctions localized at these d.inord h fthe | s i
fluctuations are now negative, as distinguished from the cas@nd, Inor glr to guarantéeet € convergfelrlme o_ the integrals, it
considered above, and the mean density evolution-as 'S 'easonable to expand ¢4p(t,e) ] as follows:

can be estimated from the following integral: exp(®(t,e)}~exp{—|a(3)[t~ Lexp—B(1) €}

<n(t)>:nowa(E)eXFXIEIt)dE. (88) X[1+A(t) €2+ ---].
0

For the(n(t)) we obtain

We again use the method of steepest descents, and follow C1y.—5/ _a3
literally the same steps as in Sec. IXA. The saddle point (M) ~exp—[a(3)|t” "}t Tihet -],
does exist for £D<4 (except atD=2 and 4, where the

situation becomes trivigland is given by the expression ¢~0.296.
o ot \2(2-D) The renormalized expression for the pre-exponential factor
|E|= has the form
4-D
43 s act™ %3 4c
. . TE(+) — + —t4ct = )
The leading exponential term has the form n*(t)=|t 35(t)) t »s(t) 3(cH 13

(n(1))~expla(D)t =P}, %2
2D ( D>2/(D_2) We have demonstrated, in this section, that self-similar

a(D)=(—

2 — renormalization can be applied to dynamical problems as
4—-D

2 well, generating expressions for the pre-exponential factors
in the form of continued noninteger powers.

with radically different behavior fob=1 and 3:

(n(t))~explla(1)[t?}, D=1 (89 X. CONCLUSION
1 Here we suggested a variant of the self-similar approxi-
(n(t))~exg{—[a(3)|t""}, D=3, (90 mation theory, permitting an easy and accurate summation of

divergent series. The method is based on a power-law alge-
Braic transformation leading to an effective increase of the
order of perturbative terms. The powers of this transforma-
tion play the role of control functions governing the conver-
gence of renormalized series. These control functions are
defined by the principle of maximal stability, i.e., from the
inimization of mapping multipliers. Such stabilizing con-

corresponding to an anomalously fast growth, compared t
the simple exgd], and anomalously slow decay, compared to
exp(—t), respectively. We think that this difference takes its
origin from the principally different properties of the corre-
sponding Schrdinger operator, where it is known that, at
D=1, all states of the particle are localized, while, at
D=3, generally speaking, both_ localized and delocali_ze rol functions may be called stabilizers.
states are preselfﬁ3].. These b_asm thgorems, yvhen gpphed Another important point of the method is the multiple
to the case of diffusion, explain why in one dimension, th.eself-similar renormalization converting all series into closed

random distribution of sources and sinks causes an exploswseeIf _— . ; -
: . : X S . -similar expressions. This multiple and complete renor-
instability of the density fluctuations, while in three dimen- P b P

ion. the disord v d i ¢ thmalization is called the self-similar bootstrap. The resulting
glon,_t eﬂ |st.ort_er car(l);:ause on %/h or_lgetr b.?fay |m§s O N&tfective sum of a divergent series can be presented through
ben5| yI' uc u_atlons.t_ cct)rl:r?e,h eldmt? abrl ytcakn (_atcure nalytical expressions containing exponentials and fractions,
cgurllftm Ineéar interactions that should be now taken Into aCsational or irrational. In particular cases, these can be only
' _ exponentials or only fractions, depending on the behavior of
At D=1, wheref(E)~E [54], applying the procedure P y P g

readv di d ab btain th ion in th control functions which dictate the resulting form. Because
alreéady discussed above, we obtain the expansion in the Vi e mych larger variety of such resulting forms, the
cinity of the saddle point:

method allows us to present the answers in relatively simple
analytical expressions which have, at the same time, quite a
(n(t))ocexp{|a(1)|t3}t5’2[1+bt‘3’2+ ], b= high accuracy. The use of several types of functions, such as

2 exponentials and various fractions, distinguishes this method

B

A
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from, e.g., the Padapproximants, which involve solely ra- several problems of statistical physics of quite different na-

tional functions. tures: to constructing the equation of state, to calculating the
In order to prove that the suggested method really givesgritical temperature, and to finding the time asymptotics for

quite simple and accurate expressions for the effective sumgochastic dynamical processes. We hope that these various

of divergent series, we, first of all, considered several toyand very different applications demonstrate well the validity
models cartooning the generating functionals in field theoryf the method.

or partition functions in statistical physics. By these ex-

amples we illustrated that the method works well in different ACKNOWLEDGMENT
situations, for single- and double-well models, and for weak
and strong coupling. Financial support of the National Science and Technology

To stress the generality of the method, we applied it toDevelopment Council of Brazil is appreciated.
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